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ABSTRACT

Wireless sensor networks (WSNs) are gaining attention in recent years. Considering the

potential low cost of a single sensor-processor unit in the near future, it is envisioned that there

will be large-scale deployments of sensor networks for various applications: environmental,

medical, inventory control, energy management, structural health monitoring, etc. A WSN

comprises of a large number of nodes that individually have limited energy and computational

power; however, by cooperating with each other, they can jointly perform tasks that are difficult

to handle by traditional centralized sensing systems.

In this dissertation, spatial and spatio-temporal signal processing methods are developed

for WSNs:

• Distributed estimation and detection using hidden Markov random fields: We derive ICM

algorithms for distributed estimation of the hidden random field from the noisy measure-

ments and consider both parametric and nonparametric measurement-error models.

• Parametric signal estimation in the presence of node localization errors: We propose a

Bayesian framework that accounts for the inherent uncertainties in the node locations

(caused by the node localization errors) and develop an estimation method that is robust

to these uncertainties.

• Event-region estimation under the Poisson regime: We propose a parametric model for

the location and shape of the event region and develop a Bayesian method for event-region

estimation in large-scale sensor networks.

• Sequential mean-field estimation and detection in spatially correlated Gaussian fields:

We propose distributed methods for estimating and detecting the mean of a correlated
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Gaussian random field observed by a sensor network.

We consider estimation and detection of both localized and global phenomena and prac-

tically important nonparametric scenarios where the distribution of the measurements is un-

known.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

There will be large-scale deployed sensor networks for various applications: environmental,

medical, inventory control, energy management, health monitoring, etc., see also in [1–3].

A WSN comprises of a large number of spatially distributed nodes that individually have

finite battery lifetime and thus limited computing and communication capabilities; however,

by cooperating with each other, they can jointly perform tasks that are difficult to handle

by traditional centralized sensing systems [3]. Sensor networks will monitor the environment

at close range with high spatial and temporal resolutions and will likely reveal previously

unobserved phenomena in the physical world [4]. Furthermore, carefully designed distributed

processing algorithms will ensure the robustness and energy efficiency of the sensor network.

Due to the limited communication range for single sensor, it is prohibitively costly for the

sensors in the network to send all their raw measurements to the fusion center (possibly far

away) for centralized processing. Instead, each sensor may only be able to process its own

measurement and communicate with a small portion of other sensors in its neighborhood.

Therefore, successful deployment of sensor networks calls for developing distributed signal

processing methods with two goals in mind:

• efficient extraction of information from noisy measurements collected by the sensors and

• maximization of the network lifespan (subject to limited power supply at each sensor).

Many problems in sensor networks have been extensively studied, e.g. field parameter

estimation [5–7], target tracking and localization [8, 9] and event-region detection [10–12], see
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also references therein. In general, the estimation and detection problems in this scenario can

be divided into two categories, described below (see also Figure 1.1).

• Localized estimation and detection. Only small number of sensors that are within the

range of phenomena observe the event of interest. Here, the event of interest is often

hidden due to the presence of noise. Therefore, the goal is to develop efficient distributed

algorithms to retrieve the hidden process from the noisy data.

• Global estimation and detection. Noisy information about an event of interest is sensed

by the entire sensor network. In this case, spatial and temporal correlations between the

measurements are usually substantial; incorporating these correlations into the detection

and estimation algorithms is crucial for avoiding erroneous conclusions.

(a) (b)

Figure 1.1 Global (right) and localized (left) estimation and detection

Both categories have their practical importance and will be discussed in this thesis.

1.2 Literature Review

Many research topics pertinent to WSNs have been studied in the past several years. We

briefly review relevant literature in the following areas: field parameter estimation (Section

1.2.1), event-region detection (Section 1.2.2), target tracking and localization (Section 1.2.3)

and communication cost analysis (Section 1.2.4).
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1.2.1 Field parameter estimation

Sensors are typically densely deployed to measure the field of interest at its own location

under this scenario. Assume that the measurement at nth sensor has the form:

yn = f(xn; θ) + en (1.1)

where yn denotes the nth sensor’s measurements, xn the sensor’s location, and f(x; θ) the

parameterized field strength, with parameter θ. The goal here is to estimate θ using measure-

ments yns. In most literature, the field strength is assumed to be constant: f(xn; θ) = θ.

A significant amount of work has been done under the above settings. In [5], mean field

estimation from coarsely quantized measurements is proposed and analyzed. It is shown that

the CRB of the ML estimator under heavily quantized measurements would be surprisingly

close to the ML estimator for continuous measurements, given the data quantization strategy is

optimal and the number of sensors are sufficiently large. However, optimal quantization scheme

can only be obtained with the actual value of field mean, which is an unknown parameter in

practice. Therefore, the performance of ML estimator degrades if the quantization scheme

deviates from optimal, thus reduces the value of the theoretical analysis in the paper.

In [7], correlated noise is taken into account in centralized global mean field estimation.

This paper adopts a simple one-dimensional structure for spatial noise correlation and assumes

that the noise is independent in time, and then shows that the relative performance loss of

neglecting noise correlation would not exceed 14%. However, the correlation structure proposed

in the paper is too simple for realistic problems; the authors also do not provide a solution to

handle distributed estimation under spatially correlated noise.

In [6], a general algorithm using LS criterion is proposed for distributed estimation of

inhomogeneous fields (corresponding to localized phenomena). Instead of assuming constant

field, the authors allow the field to vary arbitrarily, with very loose smoothness constraints.

In the proposed algorithm, the field is adaptively partitioned into squares with different sizes,

to yield the smallest penalized function, which favors smaller sample squared error as well as

fewer partitions. In addition, the proposed algorithm requires only local area communication

between sensors, which makes it truly distributed.
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1.2.2 Event-region detection

Sensor networks are often constructed to detect events within the region of interest. For

example, sensors may be deployed to detect region of the environment whose concentration of

a certain chemical is greater than a specified level.

Most previous work focused on detecting a global event that is measured by the whole

network. Saligrama et al. [13] consider an M -ary detection problem using data collected

by N distributed noisy sensors. In [13], MAP criterion is applied for hypothesis testing,

with arbitrary but known measurement models under all M hypothesis. Testing results are

achieved by reaching consensus using proper message exchange among neighboring sensors,

which is defined by a connectivity graph. It is also shown that a consensus to the centralized

MAP estimate can almost always be reached for any arbitrary network structure, with finite

link capacity constraint.

In [12], a decentralized algorithm is proposed under the assumption that noise distributions

are unknown and different across the sensors, with the existence of a fusion center which

collects testing results from all sensors. Theoretical investigations on fusion architecture of

global phenomena are presented in [14–16].

Recently, detecting localized phenomena where only part of the network observe the event

of interest has attracted attention. In [11], Krishnamachari and Iyengar propose a distributed

Bayesian algorithm for event-region detection using binary sensor measurements.

Sung et al. [10] also assume binary sensor measurements, with a more general setup that

the POI over a region has spatially varying signal strength. In the paper, the POI over the

region is modeled as a deterministic spatial signal with known shape s(x), and unknown signal

strength. Each sensor observes:






yn = γ(xn) + en = θs(xn) + en, xn within POI

yi = en, otherwise
(1.2)

where yn is the sensor observation, xn is the location coordinate of sensor n, θ is the unknown

signal amplitude and en denotes the i.i.d. observation noise at location xn. Then, binary
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decision un is made at sensor n and collected by the fusion center,

un =






1, yn > τ0

0, yn ≤ τ0

(1.3)

where τ0 is chosen to satisfy certain false alarm rate α0 for a single sensor decision. The authors

then propose the detection of spatially varying signal under the Poisson regime, assuming that

the initial sensor distribution is homogeneous Poisson with intensity λh. It is shown with the

above decision rule, alarmed sensors (sensors with decision un = 1) follow a nonhomogeneous

Poisson distribution with local intensity

λ(x) = θλhp(x) (1.4)

where p(xn) = Pr{un = 1}. With moderate constraints on s(x) and p(x), ALMP detector

and optimal threshold for single sensor are derived in [10] under the above Poisson regime. It

is claimed that the ALMP test statistic is a weighted sum of the local decisions, where the

optimal weights are the shape of the spatial signal s(x).

Both algorithms proposed in [10] and [11] sacrifice the measurement accuracy by utilizing

binary data to reduce the communication cost between sensors and fusion center, and therefore

are well suited for sensor network scenario.

In [17], Ermis and Saligrama propose a distributed implementation of an FDR approach

for localized event region detection. When performing multiple comparison tests at different

nodes, the FDR approach controls the the false discovery rate. This is in contrast to the

traditionally used methods such as the Bonferroni procedure [15] that control the false alarm

probability at each sensor. The authors present numerical simulations showing the superior

performance of FDR approach in boundary detection compared with the Bonferroni procedure.

1.2.3 Target tracking and localization

The problem of of localizing and tracking a target has been widely sighted as a canonical

application of WSNs [18]. Because of its spatial coverage and multiplicity in sensing aspect

and modality, a sensor network is ideally suited for tracking moving phenomena traversing the

range of many sensors in a large area [19].
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Zhao et al. [20] present information-based approaches for target localization where sen-

sors are activated (queried) based on information content as well as constraints on resource

consumption, latency, etc. Specifically, a mutual information-based sensor selection criterion

has been developed and successfully tested on real data [21], which in each time slot, select

a sensor whose measurements would provide the greatest amount of information about the

target location.

In [22], an ML target localization estimator is proposed for binary measurements. With

the assumption of spatial and temporal independent, identical Gaussian noise, it is claimed by

maximizing the joint likelihood of target location, the estimator would reach CRB with small

amount of communication. The estimation performance using multi-bit data, and the tradeoff

between multi-bit and multi-time frame are also discussed. However, the paper starts from

i.i.d. Gaussian noise assumption, which is quite a tight restriction in practice.

Rabbat and Nowak [18] provide decentralized source localization and tracking algorithm

based on signal strength. In the algorithm described in [18], the parameter estimate is cycled

through the network, each sensor makes small adjustment on the current estimate and passes

the updated estimate to its neighbors, where the update is based on incremental subgradient

optimization. The algorithm also converges with limited cycles of communications, which

makes it energy efficient compare with most existing tracking algorithms.

1.2.4 Communication cost analysis

Significant research efforts have focused on predicting or reducing the overall communica-

tion cost in WSNs given certain performance requirements. In [23], Krause et al. propose a

near-optimal sensor placement strategy for maximizing information while minimizing commu-

nication cost. By assuming the field of interest to be spatial Gaussian process, an approximate

algorithm is presented to minimize the overall expected number of retransmissions at the con-

straint of a specified estimation accuracy expected from the sensor network, quantized by the

mutual information.

Giridhar et al. [24] present the theoretical communication cost of computing a function
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f(x1, x2, . . . , xn) of the readings x1, x2, . . . , xn taken at the n sensors under various network

structures. The simplest two-node network is studied first and then expand to multiparty

networks. At last, reliable computation in the network with noise is discussed.

1.3 Thesis Organization

Included in this thesis are two submitted journal papers as well as several conference

publications describing our distributed algorithms for sensor network scenario, listed as follows:

• Distributed signal processing using HMRF (Chapter 2 and [25]). MRFs have been widely

used to describe spatially distributed random phenomena [26, 27]. Assuming the hidden

spatial process forms a random field that has simple structure with Markovian depen-

dence (see Section 2.2 for details), we derive ICM algorithms for distributed estimation

of a localized phenomenon (modeled as a hidden random field) from noisy measurements.

The proposed ICM algorithm only requires binary data communication among neighbor-

ing sensors and does not require the existence of a fusion center.

• Bayesian signal estimation in the presence of node localization errors (Chapter 3 and

[28, 29]). Most nodes in WSN estimate their location, see [1, 30, 31]. However, existing

signal processing methods for sensor network environment have ignored the effects of node

localization inaccuracies. Here, we propose a Bayesian framework that takes into account

of node location errors and develop the MAP estimation. In addition, we compute

the CRB for the energy-based acoustic source localization and show that the proposed

algorithm nearly reaches the optimal performance predicted by the CRB.

In addition, the thesis briefs the following works, which appeared as conference publications:

• Event-region estimation for sensor networks under Poisson regime (Chapter 4 and [32]).

Sung et al. [10] proposed an asymptotically optimal algorithm to estimate signal strength

over a region with a large number of identical binary sensors deployed under homogeneous

Poisson distribution. However, signal source location was assumed to be known in the

paper. In Chapter 4 of this thesis, we introduce a MAP algorithm that can estimate the
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signal strength as well as its source location; in addition, we also generalize the Poisson

regime to account for the scenario where the nodes utilize multiple local thresholds to

quantize the sensor measurements.

• Mean-field estimation and detection in correlated Gaussian random field (Chapter 5 and

[33]). In large-scale sensor networks, sensors will be densely deployed on the field of

interest to gain high spatial and temporal resolution. However, big density also renders

the nodes’ measurements highly correlated in space [7, 34–38]. Here, we propose a

distributed ML method to estimate the mean of the spatially correlated field; we then

propose a sequential detector to test whether the mean of the field is greater than or

equal to 0, without losing generality.

The rest of the thesis is organized as follows: Chapter 2 and 3 present Distributed estimation

and detection for sensor networks using hidden Markov random field models and Bayesian

signal estimation for sensor networks in the presence of node localization errors, respectively.

Chapter 4 shows the binary data processing under Poisson regime. The three chapters above

discuss the local estimation and detection problems, shown in Figure 1.1(a). Chapter 5 presents

the work on field mean estimation with correlated spatial noise, which is global decentralized

detection and estimation, see Figure 1.1(b). Chapter 6 concludes the finished works and depicts

the directions for future research.
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CHAPTER 2. DISTRIBUTED ESTIMATION AND DETECTION FOR

SENSOR NETWORKS USING HIDDEN MARKOV RANDOM FIELD

MODELS

A paper to appear in IEEE Transactions on Signal Processing

Aleksandar Dogandžić and Benhong Zhang

Abstract

We develop a HMRF framework for distributed signal processing in sensor-network envi-

ronments. Under this framework, spatially distributed observations collected at the sensor s

form a noisy realization of a underling random field that has a simple structure with Markovian

dependence. We derive ICM algorithms for distributed estimation of the hidden random field

from the noisy measurements. We consider both parametric and nonparametric measurement-

error models. the proposed distributed estimators are computationally simple, applicable to a

wide range of sensing environments, and localized , implying that the nodes communicate only

with their neighbors to botain the desired results. We also develop a calibration method for

estimating MRF model parameters from training data and discuss initialization of the ICM

algorithms. The HMRF framework and ICM algorithms are applied to event-region detection.

Numerical simulations demonstrate the performance of the proposed approach.

2.1 Introduction

Recent advances in integrated sensor and RF technologies, wireless communications, and

signal processing allow development of sensor-network systems composed of low-cost sensor-

processor elements (nodes) jointly working to collect and analyze noisy spatio-temporal mea-
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surements. Large-scale sensor networks that can monitor an environment at close range with

high spatial and temporal resolutions are expected to play an important role in various ap-

plications, including assessing ”health” of machines, aerospace vehicles, and civil-engineering

structures; environmental, medical, food-safety, and habitat monitoring; energy management,

inventory control, home and building automation, see also [1–3, 39–41]. Each node will have

limited sensing, signal processing, and communication capabilities, but by cooperating with

each other they will accomplish tasks that are difficult to perform with conventional cen-

tralized sensing systems [3]. Sensor networks are expected to reveal previously unobservable

phenomena in the physical world and are currently attracting considerable attention.

MRF models have been widely used to describe spatially distributed random phenomena,

see e.g. [26, 42]. In this paper (see also [43]), we propose a HMRF framework for distributed

signal processing in sensor-network environments. Under this framework, spatially distributed

observations (collected at the sensors) form a noisy realization of a random field with Marko-

vian dependence structure.1 Previous work on distributed HMRF based signal processing

for sensor networks focused on developing message passing algorithms for linear Gaussian

measurement-error and MRF process models with known model parameters, see also the dis-

cussion in Section 2.2.1. In contrast, our HMRF framework allows for general measurement

and random-field models with unknown measurement error model parameters. The unknown

measurement-error model parameters vary from one node to another, thus taking into account

imperfect calibration of the sensors at different nodes and permitting distributed localized

processing and nonparametric measurement-error modeling. The nonparametric measurement-

error models that we employ are important in practical applications where accurate parametric

models are difficult to find, especially in large-scale sensor networks operating in time-varying

environments [44–46].

We derive ICM algorithms for distributed estimation of a localized phenomenon (modeled

as a hidden random field) from noisy measurements. In particular, the proposed ICM algo-

1Here, Markovian dependence implies that, given random-field values at all other locations, the
conditional distribution of the random field at any location depends only on the field values at the
neighboring locations, see also ( 2.10) in Section 2.2.
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rithms are designed to increase the predictive likelihood of the hidden field.2 The underlying

distributed processing paradigm ensures robustness and reliability of the proposed approach.

We demonstrate our approach by applying it to event-region detection, which is an important

task in wireless sensor networks [11]. We consider parametric Gaussian and nonparametric

(empirical likelihood and entropy) measurement-error models and utilize an autologistic MRF

process model for event-region detection.

The HMRF framework is introduced in Section 2.2 and general ICM method is presented in

Section 2.3. We discuss the event-region detection problem in Section 2.4 where we first propose

suitable measurement-error and random-field models (Sections 2.4.1 and 2.4.2) and then derive

the corresponding ICM detection algorithms (Sections 2.4.3 and 2.4.4). Initialization of the

ICM iterations is discussed in Sections 2.4.3 and 2.4.4. In Section 2.5, we develop a PPL

calibration method for estimating MRF model parameters from training data and specialize it

to the event-region detection problem. This method is based on maximizing the product of the

full conditional predictive pdfs/pmfs of the random-field values at all the nodes. In Section 2.6,

we evaluate the performance of the proposed detection algorithms via numerical simulations.

Concluding remarks are given in Section 2.7.

2.2 Hidden Markov random field framework

Assume that each node (sensor) k ∈ {1, 2, . . . , K} in the network collects a vector of

measurements

yk = [yk(1), yk(2), . . . , yk(N)]T (2.1)

where N denotes the number of observations collected by each node k and ”T” denotes a

transpose. Define also the vector of all measurements:

y = [yT
1 , yT

2 , . . . ,yT
K ]T (2.2)

We assign a hidden random variable βk to each node k and adopt the following hierarchical

model for the collected observations:

2See [47] for the definition of predictive likelihood and examples of its use.



www.manaraa.com

12

• βk, k = 1, 2, . . . , K form an MRF describing the process model:

β = [β1, β2, . . . , βK ]T (2.3)

• Given the MRF β, yk are conditionally independent random vectors with pdfs or pmfs

pyk|βk
(yk|βk; vk) that depend only on βk

py|β(y|β; v) =

K∏

k=1

pyk|βk
(yk|βk; vk) (2.4)

describing the data (measurement-error) model.

Here, vk is the vector of unknown measurement-error model parameters at the kth node and

v = [vT
1 , vT

2 , . . . ,vT
K ]T (2.5)

Note that the measurement-error model parameters vk vary with the node index k, taking

into account imperfect calibration of the sensors at different nodes. The above framework can

account for both discrete and continuous measurements and random fields.The parameters vk

may be used to model the entire measurement-error probability distribution pyk|βk
(yk|βk; vk)

in a nonparametric manner, provided that the elements of yk are conditionally i.i.d.; see

Section 2.4.1.

Our goal is to estimate the MRF β from the observations yk, k = 1, 2, . . . , K. We define

the probability distribution of β via a conditionally-specified model suitable for distributed

neighborhood-based signal processing. Before formally defining an MRF, let us introduce

some terminology and notation. Throughout this paper, we assume that the neighborhood of

a node k [denoted by N (k)] consists of all the nodes l ∈ {1, 2, . . . , K} that are within a cutoff

distance d from that node, i.e.

N (k) = {l : ‖rk − rl‖≤d and l 6=k} (2.6)

where

‖rk − rl‖ =
√

(rk − rl)T (rk − rl) (2.7)
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and rk and rl are the kth and lth node locations in Cartesian coordinates. Define the set of

random-field values in this neighborhood:

Nβ(k) = βl, l∈N (k) (2.8)

and the conditional pdfs or pmfs of βk given the neighboring MRF values:

pβk|Nβ(k)(βk|Nβ(k)), k = 1, 2, . . . , K (2.9)

Then, the Markov property of an MRF β implies that, for all k = 1, 2, . . . , K, the conditional

pdfs/pmfs of βk given the random-field values at all other nodes satisfy

pβk|{βl,l 6=k}(βk|{βl, l 6=k}) = pβk|Nβ(k)(βk|Nβ(k)) (2.10)

2.2.1 HMRFs as probabilistic graphical models

MRF and HMRF models belong to the (broader) class of probabilistic graphic models (see

e.g. [42, 48–52] and reference therein) and can be formulated using an undirected mathemat-

ical graph whose nodes correspond to the random variables in the field and its edges define

the underlying neighborhood structure. In [48, 50], graphical-model based extended mes-

sage passing3 algorithms are developed for inference on HMRF models with linear Gaussian

measurement-error and MRF process models and known model parameters, embedded-trees

and embedded-triangles algorithms are developed for this scenario in [49, 50, 53]. A belief

propagation approach is proposed in [54] for multi-hypothesis testing of global phenomena

in sensor-network environments. Figure 2.1 shows a graphical representation of an HMRF

model, where the filled circles depict the hidden random field (and their locations correspond

to the node locations) and hollow circles the observed data. The edges in Figure 2.1 describe

the (conditional) statistical dependence between the nodes in the graph, as inferred from the

specifications in ( 2.6) and ( 2.4).

In the following we present a distributed algorithm for computing maximum predictive

likelihood estimates of the random field β.

3See [52] for a detailed exposition on message passing algorithms for graphical models.
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Figure 2.1 A graphical representation of an HMRF model.

2.3 ICM random-field estimation

We propose an ICM algorithm for estimating the MRF β where each node k ∈ {1, 2, . . . , K}

performs the following steps:

• (ICM1) collects the current estimates of βl from its neighborhood N (k);

• (ICM2) updates its estimate of βk by maximizing the conditional predictive log likelihood:

Lk(βk|Nβ(k)) = maxvk
{lnpyk|βk

(yk|βk; vk)} + lnpβk|Nβ(k)(βk|Nβ(k)) (2.11)

with respect to βk;

• (ICM3) broadcast the obtained estimate of βk to the nodes in the neighborhood N (k).

When applied to each node k in turn, this procedure defines a single cycle of the ICM algorithm.

The cycling is performed until convergence, i.i. until the estimates of βk do not change signif-

icantly for all k ∈ {1, 2, . . . , K}. The ICM approach is computationally simple and applicable

to a wide range of sensing environments. It does not require careful treatments of loops in the
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inference graphs, constructing junction trees etc. It is also localized, implying that the nodes

communicate only with their neighbors to obtain the desired results. Localized algorithms are

robust to node failures and the communication overhead scales well with increasing network

size, see [2, 39]. Distributed localized algorithms and architectures also facilitate rapid data

processing and information collection, and are well-suited for systems that utilize sleep modes

to conserve energy [55].

Denote by pβ(β) the joint pdf/pmf of β1, β2, . . . , βK . Then, applying (ICM1)-(ICM3) at

each node k increases the joint predictive log-likelihood function of β (see also [47])4:

L(β) = maxv{ln[py|β(y|β; v)]} + ln[pβ(β)] (2.12)

in a stepwise-ascent manner. In particular, combining the stepwise-ascent maximization ap-

proach with the Markovian property of pβ(β) leads to the distributed localized iteration

(ICM1)-(ICM3). In general, this iteration converges to a local maximum of L(β). However, if

the conditional predictive log likelihoods in 2.11 are unimodal in βk (as in the HMRFs with

linear Gaussian measurement-error and MRF process models studied in [48–50, 53]), then the

ICM algorithm converges to the global maximum of L(β). Interestingly, its convergence to a

local maximum of L(β) [whenn initialized with the local ML estimates of the βk’s] may be

preferred compared with finding the global maximum because MRFs often have undesireable

large-scale properties [27].

The predictive log likelihood in ( 2.12) has a Bayesian interpertation. Here, we view pβ(β)

as the prior distribution of the hidden field β and assign a flat prior distribution: pv(v) ∝ 1 to

the measurement-error model parameters v. Then maximizing L(β) in ( 2.12) yields a mode

of the joint posterior pdf/pmf of the unknown parameters. We emphasize that the purpose of

the proposed method is to resolve ambiguous measurements. Otherwise, if the data provides

strong evidence about the hidden field β, the influence of the prior pβ(β) disappears, which is

true for Bayesian methods in general. The ICM approach to finding modes of joint posterior

distributions dates back to the seminal paper by Lindley and Smith [56], see also [57, 58].

4Note that the conditional predictive log likelihood Lk(βk|Nβ(k)) in ( 2.11) follows from the joint
predictive log-likelihood L(β) by substituting the identity pβ(β) = pβk|Nβ(k)(βk|Nβ(k))·pNβ(k)(Nβ(k))

into ( 2.12) and keeping the terms that depend on βk.
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The iteration (ICM1)-(ICM3) generalizes the ICM algorithm for more general neighborhood

models and unknown measurement-error model parameters that vary from node to node. The

latter extension is key for sensor-network applications where the nodes are not perfectly cal-

ibrated and data processing should be performed locally as much as possible. It also allows

nonparametric measurement-error modeling, as discussed in Section 2.4.1.

In the following section, we demonstrate the proposed approach by applying it to event-

region detection.

2.4 Event-region detection using the HMRF framework and ICM method

We utilize the proposed HMRF framework and ICM method to efficiently remove false

alarms in event-region detection tasks. Here, our goal is to detect a region in the environment

in which an event of interest has occurred. For example, if the network is capable of sensing

concentration of chemical X, then it is of interest to answer the following question [11]: ”In

which regions in the environment is the concentration of chemical X greater than a specified

level?”

We first describe measurement-error and process models suitable for event-region detection

(Sections 2.4.1 and 2.4.2) and then derive the corresponding ICM algorithms for event-region

detection (Sections 2.4.3 and 2.4.4).

2.4.1 Measurement-error model

In this section, we consider hidden fields that take two discrete values

• βk = 0 (signal absent) and

• βk = 1 (signal present)

and utilize a simple signal-plus-noise measurement-error model for the measurements

yk(1), yk(2), . . . , yk(N) collected at node k ∈ {1, 2, . . . , K}:

yk(t) = µk(βk) + ek(t), t = 1, 2, . . . , N (2.13)

where
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• µk(0) = 0 (signal absent),

• µk(1) is the (unknown) nonzero signal, and

• ek(t), t = 1, 2, . . . , N is zero-mean i.i.d. noise.

We denote the pdf/pmf of the noise ek(t) by pnoisek
(ek(t)). Consequently, given βk,

yk(1), yk(2), . . . , yk(N) are conditionally i.i.d. random variables with the joint pdf/pmf

pyk|βk
(yk|βk) =

N∏

t=1

pnoisek
(yk(t) − µk(βk)) (2.14)

see also 2.4 for a full measurement-error model specification.

1) Gaussian measurement-error model: Under the Gaussian measurement-error model, we

assume that the noise pdf at node k is zero-mean Gaussian:

pnoisek
(ek(t); σ

2
k) =

1

σk

√
2π

· exp[−e2
k(t)/(2σ2

k)] (2.15)

where σ2
k is the unknown noise variance at the kth sensor. Here, the measurement-error model

parameters are vk = σ2
k for βk = 0 and vk = [µk(1), σ2

k]
T for βk = 1.

2) Nonparametric measurement-error models: We now consider a scenario where the noise

probability distribution pnoisek
(·) at node k is unknown and utilize a class of nonparametric

measurement-error models. This scenario is important in practical applications where accurate

parametric measurement-error model are difficult to find, as is often the case in large-scale

sensor networks operating in time-varying environments (see e.g. [44–46]). To simplify the

notation, we omit the dependence of the mean value µk on βk throughout this section. Clearly,

the discussion on unknown µk corresponds to the case where µk = µk(1) 6= 0.

Assume that, given βk, yk(1), yk(2), . . . , yk(N) are conditionally i.i.d. random variables

with mean µk = µk(βk) where each yk(t) is assigned a multinomial probability pk,t. We then

construct the following nonparametric log-likelihood function of the mean µk at node k:

lk(µk) =
N∑

t=1

lnpk,t(µk) (2.16)

where pk,t(µk), t = 1, 2, . . . , N are estimates of the probabilities pk,t, t = 1, 2, . . . , N computed

by minimizing the Cressie-Read power divergence5 between the discrete distribution defined

5The Cressie-Read divergence is closely related to the Renyi divergence [59], see also [60, 61]
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by pk,t, t = 1, 2, . . . , N and the discrete uniform distribution on t = 1, 2, . . . , N (see [60–62]):

minpk,t,t=1,2,...,N

∑N
t=1[(Npk,t)

−κ − 1]

Nκ(1 + κ)
(2.17)

subject to the constraints

N∑

t=1

pk,t[yk(t) − µk] = 0, pk,t ≥ 0,
N∑

t=1

pk,t = 1 (2.18)

Here, −∞ < κ < ∞ is a known constant [define a particular choice of the discrepancy measure

in ( 2.17)] and the degenerate cases κ ∈ {0,−1} are handled by taking limits.

In the following, we focus on the non-trivial case where6

yk,MIN = mint∈{1,2,...,N}yk(t) < µk < maxt∈{1,2,...,N}yk(t) = yk,MAX (2.19)

and on the limiting values of κ (i.e. κ = 0 and κ = −1), which correspond to commonly

used least favorable distribution families [62] and lead to the empirical likelihood and empirical

entropy measurement-error models discussed below. (The concept of a least favorable family

was introduced by Stein in [63].)

Empirical likelihood: If κ = 0 in ( 2.17), ( 2.16) simplifies to the following concentrated

empirical log-likelihood function7 of the mean µk at node k:

lk(µk) = {maxpk,t,t=1,2,...,N (

N∑

t=1

lnpk,t)|
N∑

t=1

pk,t[yk(t) − µk] = 0, pk,t ≥ 0,

N∑

t=1

pk,t = 1} (2.20)

which can be viewed as a multinomial concentrated log likelihood [64]. In this case, the

measurement-error model parameters are vk = [pk,1, pk,2, . . . , pk,N ]T for βk = 0 and vk =

[µk, pk,1, pk,2, . . . , pk,N ]T for βk = 1, where the multinomial probabilities pk,1, pk,2, . . . , pk,N aer

constrained to satisfy the conditions in ( 2.18), see also ( 2.20).

Maximizing lk(µk) with respect to µk yields

maxµk
[lk(µk)] = −N lnN (2.21)

6Note that the optimization problem in ( 2.17) does not have a solution if µk < yk,MIN or µk >
yk,MAX. In such cases, we set lkµk = −∞ by convetion. If yk,MIN = yk,MAX = µk, we take lk(µk) =
−N lnN and if µk = yk,MIN < yk,MAX or µk = yk,MAX > yk,MIN, we set lk(µk) = −∞.

7See also [62, 64] for the definition and properties of the empirical likelihood.
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which follows by noting that, subject to
∑N

t=1 pk,t = 1, the log-likelihood function
∑N

t=1 lnpk,t

is maximized by choosing the discrete uniform distribution of the observations (i.e. pk,t =

1/N, t = 1, 2, . . . , N). This choice yields the NPMLE of µk:

yk =
1

N
·

N∑

t=1

yk(t) = argmaxµk
lk(µk) (2.22)

also known as the bootstrap estimate of µk [64]. In Section 2.8, we compute ( 2.20) by solving

a on-dimensional convex dual problem:

lkµk = −N lnN + minλk
Ξk(λk; µk) (2.23)

where

Ξk(λk; µk) = −
N∑

t=1

ln{1 + λk[yk(t) − µk]} (2.24)

is a convex function of λk. To ensure that the estimates of the multinomial probabilities remain

in the allowed parameter space, the search for λk that minimizes ( 2.24) should be constrained

to the interval (see Section 2.8):

1 − N−1

µk − yk,MAX
< λk <

1 − N−1

µk − yk,MIN
(2.25)

and can be efficiently performed using the damped Newton-Raphson iteration8:

λ
(i+1)
k = λ

(i)
k + δ

(i)
k · (

N∑

t=1

[yk(t) − µk]
2

{1 + λ
(i)
k [yk(t) − µk]}2

)−1 ·
N∑

t=1

yk(t) − µk

1 + λ
(i)
k [yk(t) − µk]

(2.26)

where the damping factor 0 < δ
(i)
k ≤ 1 is chosen (at every step i) to ensure that ( 2.24) decreases

and λ
(i+1)
k remains within the interval specified in ( 2.25)9. The above iteration converges to

the unique solution λk = λk(µk).

In Section 2.8, we sketch a proof that the empirical=likelihood approach employs a least fa-

vorable nonparametric distribution family for estimating µk and derive the CRB for estimating

µk under the empirical likelihood measurement-error model. Assuming the discrete uniform

8See e.g. [65] for an introduction to the Newton-Raphson algorithms. To simplify the notation in

( 2.26) and later in ( 2.32), we omit the dependence of λ
(i)
k and δ

(i)
k on µk.

9In particular, we start with δ
(i)
k = 1 and check if ( 2.24) decreases and λ

(i+1)
k remains within the

interval ( 2.25). If these tests fail, we keep halving δ
(i+1)
k until they are satisfied.
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distribution of the observations, this CRB simplifies to:

−[
N∑

t=1

1

N
· d2lk(yk)

dy2
k

]−1 =
s2
k

N
(2.27)

where

s2
k = s2

0,k − y2
k

s2
0,k =

1

N
·

N∑

t=1

y2
k(t)

(2.28)

and yk has been defined in ( 2.22).

Empirical entropy: For κ = −1, ( 2.17) reduces to

minpk,t,t=1,2,...,N

N∑

t=1

pk,tln(Npk,t) (2.29)

subject to the constraints in ( 2.18). In ( 2.29), we minimize the relative entropy10 between

the multinomial distribution defined by the probabilities pk,t, t = 1, 2, . . . , N and the discrete

uniform distribution on t = 1, 2, . . . , N , yielding the empirical entropy estimates pk,t(µk), t =

1, 2, . . . , N of the multinomial probabilities. It can be shown that pk,t(µk) have the following

form (see Section 2.9):

pk,t(µk) =
exp[λk(µk)yk(t)]∑N

τ=1 exp[λk(µk)yk(τ)]
, t = 1, 2, . . . , N (2.30)

where λk(µk) is obtained by minimizing

ζk(λk; µk) =
N∑

t=1

exp{λk[yk(t) − µk]} (2.31)

with respect to λk. Note that ζk(λk; µk) is a convex function of λk and can be efficiently

minimized using the damped Newton-Raphson iteration:

λ
(i+1)
k = λ

(i)
k − δ

(i)
k · {

N∑

t=1

exp[λ
(i)
k yk(t)] · [yk(t)− µk]

2}−1 ·
N∑

t=1

exp[λ
(i)
k yk(t)] · [yk(t)− µk] (2.32)

Here, the damping factor 0 < δ
(i)
k ≤ 1 is chosen to ensure that ( 2.31) decreases. Finally, we

compute the nonparametric log-likelihood function of µk by substituting ( 2.30) into ( 2.16):

lk(µk) = N · λk(µk)yk − N · ln{
N∑

t=1

exp[λk(µk)yk(t)]} (2.33)

10Relative entropy, also known as Kullback-Leibler distance, is defined in e.g. [66].
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The above empirical-entropy approach is closely related to the nonparametric tilting in [67, 68].

It is also known as the empirical exponential family likelihood [69] because it can be derived by

constraining the probability distribution of yk(1), yk(2), . . . , yk(N) to belong to the exponential

family of distributions.

In [67], Efron presented the CRB for µk under the empirical entropy measurement-error

model and used it to argue that the empirical-entropy approach employs a least favorable

family for estimating µk. Assuming the discrete uniform distribution of the observations, the

expression for this CRB simplifies to ( 2.27), see Section 2.9 and [67].

2.4.2 Autologistic MRF process model

Assume that each node k makes a binary decision about its current status, i.e. it decides

between the hypothesis

H0,k: (signal absent, βk = 0), corresponding to µk = 0

versus the one-sided alternative

H1,k: (signal present, βk = 1), corresponding to µk > 0.

This formulation is suitable for detecting event regions with elevated concentrations of chemi-

cals, see the example at the beginning of Section 2.4. In this example, we restrict the parameter

space of the mean signal µk to the set of non-negative real numbers. To describe the binary

MRF for event-region detection problems, we adopt the autologistic MRF process model spec-

ified by the conditional pmfs (see [26]):

pβk|Nβ(k)(βk|Nβ(k)) =
exp(akβk + βk · ∑l∈N (k) ck,lβl)

1 + exp(ak +
∑

l∈N (k) ck,lβl)
(2.34)

for k = 1, 2, . . . , K, where ak and ck,l are spatial-trend and spatial-dependence MRF model

parameters. Furthermore, we utilize the following simple spatial trend and dependence models:

• constant spatial trend (independent of k):

ak = a (2.35)
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• homogeneous spatial dependence with equal evidence from each neighbor:

ck,l =






η, ‖rk − rl‖ ≤ d

0, ‖rk − rl‖ > d
(2.36)

where d is the cutoff distance, see also Section 2.2.

In event-region detection problems, η is a positive constant describing the field strength. This

spatial-dependence model quantifies the notion that the random-field values at the nodes that

are close (in terms of the spatial distance) should be more similar than the values at the nodes

that are far apart. More complex spatial dependence models can be developed along the lines

of [26] (for isotropic dependence) and [70] (for anisotropic dependence).

In applications where the cutoff distance d is approximately equal to the radio-transmission

range of the sensor elements, the neighborhood N (k) consists of those nodes with which k can

communicate directly. Then, we can determine the neighborhoods without utilizing the node

location information. However, the assumption that the cutoff distance coincides with the

communication range may be impractical. In addition, the effective cutoff distance may vary

slightly from one node to another.

In the following, we specialize the general ICM algorithm in Section 2.3 to the event-region

detection prblem using the measurement-error model in Section 2.4.1 and process model in

( 2.34).

2.4.3 ICM detection for Gaussian measurement-error model

We first define the indicator function

iA(x) =






1, x ∈ A

0, otherwise
(2.37)

Under the Gaussian measurement-error and autologistic process models, Step (ICM2) in the
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ICM algorithm simplifies to selecting βk = 1 if

Lk(1|Nβ(k)) − Lk(0|Nβ(k)) =
2

N
· ln(

s2
0,k

s2
k

)·i[0,∞)(yk) + ak +
∑

l∈N (k)

ck,lβl

=
2

N
· ln(

s2
0,k

s2
k

)·i[0,∞)(yk) + a + ηuk

≥ 0

(2.38)

and selecting βk = 0 otherwise; see Section 2.10 for details of the derivation. Here,

uk =
∑

l∈N (k)

βl (2.39)

is the number of neighbors of k reporting the presence of signal and N (k), yk, s
2
k, s

2
0,k have been

defined in ( 2.6), ( 2.22), ( 2.28) and ( 2.39). The first term in ( 2.38) is the onesided t-test

statistic for the mean µk (based on the ”local” measurements collected at node k), whereas the

second and third terms account for the spatial trend and spatial dependence effects introduced

by the MRF model.

1) Initialization: To obtain initial decisions at each node k, we ignore the neighborhood

dependence and apply the local one-sided t test for the mean µk: select βk = 1 if

s2
0,k

s2
k

· i[0,∞)(yk) ≥ τG (2.40)

and select βk = 0 otherwise. This test is also the GLR test for the hypothesis testing problem

described in Section 2.4.2. Denote by B(0.5(N − 1), 0.5) the centralized beta distribution with

parameters 0.5(N − 1) and 0.5. We select the threshold

τG = b−1
0.5(N−1),0.5,2PFA

(2.41)

to guarantee a specified probability of false alarm PFA. Here, b0.5(N−1),0.5,p is defined using

P [β ≤ b0.5(N−1),0.5,p] = p (2.42)

where β is a B(0.5(N − 1), 0.5) random variable.
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2.4.4 ICM detection for nonparametric measurement-error models

Under the nonparametric measurement-error models in Section 2.4.1, the condition ( 2.19)

implies that one-sided detection in Section 2.4.2 will be meaningful only if

yk,MAX ≥ 0 (2.43)

with equality implying yk,MIN = yk,MAX = 0. For the empirical likelihood and entropy

measurement-error models, Step (ICM2) simplifies to selecting βk = 1 if

Lk(1|βl ∈ Nβ(k)) − Lk(0|βl ∈ Nβ(k))

= maxµk>0[lk(µk)] = lk(0) + lnpβk|Nβ(k)(1|Nβ(k)) − lnpβk|Nβ(k)(0|Nβ(k))

= [−N lnN − lk(0)] · i[0,∞)(yk) + a + ηuk

≥ 0

(2.44)

and selecting βk = 0 otherwise, see Section 2.11. Here, the nonparametric log likelihoods

lk(0) for the empirical likelihood and entropy models are computed using ( 2.24) and ( 2.33),

respectively.

1) initialization: We now discuss the initialization of the ICM iteration under the empirical

likelihood and entropy measurement-error models. We propose the following local GLR tests

that ignore the neighborhood dependence: select βk = 1 if

√
2[−N lnN − lk(0)] · i[0,∞)(yk) ≥ τNP (2.45)

and select βk = 0 otherwise. The threshold τNP which guarantees a specified probability of

false alarm PFA can be approximately computed by solving (see Section 2.12):

Φ(τNP) = 1 − PFA (2.46)

where Φ(·) denotes the cumulative distribution function of the standard normal random vari-

able. The above approximation is based on the Wilks’ theorem for the empirical likelihood

[62, 64] and similar results for empirical entropy [71, 72], derived under the assumption that

N → ∞, see also Section 2.12. Therefore, its accuracy improves as the number of observations

per sensor increases.
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In the above ICM algorithms, the nodes exchange binary messages (βk = 0 or βk = 1) to

inform neighbors about their status; the communication cost of this exchange is low, which is

important in most practical applications that require energy and bandwidth efficiency [3].

2.5 MRF calibration

Assume that training data is available containing both the observations yk, k = 1, 2, . . . , K

and the true values of the MRF β. we develop a calibration method for estimating the MRF

model parameters from the training data. Denote the vector of MRF model parameters by

ω. To emphasize the dependence of the local and global predictive log-likelihood functions

in ( 2.11) and ( 2.12) on ω, we use Lk(βk|Nβ(k); ω) and L(β; ω) to denote these functions

throughout this section. Similarly, we use pβ|Nβ(k)(β|Nβ(k); ω) to denote the conditional pdfs

in ( 2.9).

We denote

exp[L(β; ω)]∫
exp[L(b; ω)]db

or
exp[L(β; ω)]∑
b exp[L(b; ω)]

(2.47)

as the ”predictive” pdfs or pmfs of β, see [47]. Then we may compute maximum ”predictive”

likelihood estimates of ω by maximizing the expressions in ( 2.47). However, the denomina-

tors in (2.47) are usually computationally intractable. Motivated by Besag’s pseudolikelihood

approach in [26] and [73], we construct a computationally tractable log pseudo predictive

likelihood function:

LPPL(ω) =
K∑

k=1

ln{ exp[Lk(βk|Nβ(k); ω)]
∑1

i=0 exp[Lk(i|Nβ(k); ω)]
} (2.48)

and estimate the MRF model parameters ω by maximizing LPPL(ω) with respect to ω. Here,

exp[Lk(βk|Nβ(k); ω)]
∑1

i=0 exp[Lk(i|Nβ(k); ω)]
(2.49)

is the full conditional predictive pdf/pmf of βk. The above calibration method applies to the

general measurement-error and MRF models described in Section 2.2.

Event-region detection: we now specialize ( 2.48) to the event-region detection problem,
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leading to

LPPL(ω) =const + a · (
K∑

k=1

βk) + η · (
K∑

k=1

βkuk)

−
K∑

k=1

ln{1 + exp[Lk(1|Nβ(k); ω) − Lk(0|Nβ(k); ω)]}
(2.50)

where const denotes terms that do not depend on the MRF model parameters ω. Here, ( 2.50)

follows by substituting the autologistic MRF model ( 2.34) into ( 2.48) and neglecting constant

terms. Under the Gaussian and nonparametric measurement-error models in Section 2.4.1, the

expression Lk(βk = 1|βl ∈ Nβ(k)) − Lk(βk = 0|βl ∈ Nβ(k)) in ( 2.50) simplify to ( 2.38) and

( 2.44), respectively. To efficiently compute the last term in ( 2.50), we utilize the following

approximation: for large positive x,

ln[1 + exp(x)] ≈ x (2.51)

Interestingly, setting the data-dependent log-likelihood terms in ( 2.11) to zero and substituting

the resulting expressions into ( 2.48) yields the Besag’s pseudo log-likelihood function

LPL =
K∑

k=1

lnpβk|Nβ(k)(βk|Nβ(k); ω) (2.52)

for estimating the MRF model parameters, see [26, 73]. Note that ( 2.52) utilizes only the MRF

β and does not depend on the measurements yk, k = 1, 2, . . . , K. Maximizing the pseudo log

likelihood ( 2.52) would yield reasonable estimates of the MRF parameters if the measurement-

error model parameters v1, v2, . . . ,vK were known in the ICM estimation/detection stage.

Note, however, that we assume that v1, v2, . . . ,vK are unknown and estimate them locally at

each node, which is taken into account by the PPL calibration method in ( 2.48).

2.6 Numerical examples

To assess the performance of the proposed event-region detection methods, we consider

sensor networks containing K = 1000 nodes randomly (uniformly) distributed on a 50m×50m

grid with 1m spacing between the potential node locations. We assume that each sensor k

collects N = 5 measurements corrupted by i.i.d. zero-mean additive noise, unless specified
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otherwise (see e.g. Section 2.6.3). The noiseless field containing two event regions is shown

in Figure 2.2 (left) and the sensor locations (with corresponding ideal decisions) are shown in

Figure 2.2 (right). Here, the filled circles correspond to the nodes in the event regions. The

noisy measurements collected at the nodes outside the event region have zero means.
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Figure 2.2 (Left) Noiseless field and (right) a sensor network with

K = 1000 nodes.
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Figure 2.3 Gaussian measurement scenario: (Left) averaged observations

yk, k = 1, 2, . . . , K as functions of the node locations and (right)

one-sided t-test results for PFA = 5%.

Throughout this section, we set the cutoff distance to d = 3m and define neighborhoods

according to ( 2.6). In all simulation examples, we estimated the MRF model parameters a
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(spatial trend) and η (field strength) using the calibration procedure in Section 2.5, where the

calibration field and other details of our implementation are given in Section 2.6.4.

2.6.1 Guassian measurement scenario
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Figure 2.4 Gaussian measurement scenario: Event-region detection results

after (left) one cycle and (right) two cycles of the Gaussian ICM

algorithm.
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Figure 2.5 Gaussian measurement scenario: Event-region detection results

upon convergence of the Gaussian ICM algorithm.

In the first set of simulations, we generated the simulated data using the Gaussian measurement-

error model in Section 2.4.1 with constant noise variance σ2
k = 0.5 for all k = 1, 2, . . . , K. In

Figure 2.3 (left), we show the averaged observations yk, k = 1, 2, . . . , K in ( 2.22) as functions
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of the node locations for one realization of the noisy field. Applying the one-sided t-test in

( 2.42) yields the results in Figure 2.3 (right), where the threshold τG was chosen to satisfy the

false-alarm probability PFA = 5%. The filled circles correspond to the nodes declaring the pres-

ence of signal whereas hollow circles correspond to the nodes declaring the signal absence. The

t-test decisions wer used to initialize the Gaussian ICM detector (described in Section 2.4.3,

see also Section 2.3; the decisions after one and two ICM cycles are shown in Figure 2.4. In

this example, all isolated nodes reporting the presence of signal were correctly recognized as

false alarms already after two ICM cycles. The Gaussian ICM algorithm converged in four

cycles yielding the results in Figure 2.5.
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Figure 2.6 Gaussian measurement scenario: Event-region detection results

for (left) the empirical likelihood and (right) empirical entropy

nonparametric ICM algorithms.

Applying the nonparametric ICM detectors in Section 2.4.4 yields (upon convergence) the

results in Figure 2.6. These detectors were initialized using the local GLR tests in ( 2.45) with

the threshold τNP chosen to (approximately) satisfy the false-alarm probability PFA = 5%.

Both the empirical likelihood and entropy based ICM algorithms converged in four cycles and

were successful in removing the false alarms.
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Figure 2.7 Quantized Gaussian measurement scenario: (Left) averaged ob-

servations yk, k = 1, 2, . . . , K as functions of the node locations

and (right) event-region detection results for the Gaussian ICM

algorithm.

2.6.2 Quantized Gaussian measurement scenario

We now study the performance of the proposed methods in the case where the Gaussian

observations [generated as described in Section 2.6.1] have been coarsely quantized, leading to

non-Gaussian measurements from a discrete probability distribution. Here, we quantized the

measurements to the closest integer values in the interval [−2, 3]. In Figure 2.7 (left), we show

the averages yk, k = 1, 2, . . . , K of the quantized observations [see ( 2.22)] as functions of the

node locations. Applying the ICM detectors for Gaussian and nonparametric measurement-

error models to the quantized measurements yields the results in Figure 2.7 (right) and Fig-

ure 2.8, respectively. The ICM algorithms were initialized using the local GLR tests in ( 2.42)

and ( 2.45) with the τG and τNP chosen using ( 2.41) and ( 2.46) to satisfy the false-alarm

probability PFA = 5%. The Gaussian ICM algorithm performs poorly under this scenario due

to the mismatch between the quantized observations and assumed Gaussian measurement-

error model, see Figure 2.7 (right). The empirical likelihood and empirical entropy based ICM

methods estimated the unknown probability distributions of the measurements and success-

fully removed the false alarms, see Figure 2.8. Unlike the Gaussian and empirical likelihood

approaches the empirical entropy method provides a connected estimated of the event region
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Figure 2.8 Quantized Gaussian measurement scenario: Event-region de-

tection results for (left) the empirical likelihood and (right) em-

pirical entropy nonparametric ICM algorithms.

in the upper right corner of the network.

2.6.3 Probabilities of false alarm and miss
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Figure 2.9 Gaussian measurement scenario: Average probabilities of (left)

false alarm and (right) miss, as functions of the number of ob-

servations per sensor N .

We analyze the average error performances of the GLR and ICM methods under the Gaus-

sian and quantized Gaussian measurement scenarios. Our performance metrics are the average
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probabilities of false alarm and miss, calculated using 100 independent trials11 where averag-

ing has been performed over the noisy random-field realizations, random node locations and

scheduling (in the ICM methods).
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Figure 2.10 Quantized Gaussian measurement scenario: Average proba-

bilities of (left) false alarm and (right) miss, as functions of

N .

We first consider the Gaussian measurement scenario and present the average probabilities

of false alarm and miss for different methods as functions of the number of observations per

sensor N , see Figure 2.9. In this case,

• the average false-alarm and miss error performances of all ICM methods improve as N

increases;

• the average false-alarm probability of the one-sided t-test is constant and equal to the

specified value of 5%, verifying the validity of ( 2.41) and ( 2.42);

• the false-alarm probabilities of the local nonparametric GLR tests attain the specified

level of 5% asymptotically (i.e. for large N , see also Section 2.4.4);

• the Gaussian ICM method achieves the smallest false-alarm probability for all N (com-

pared with the other methods).

11Here, the two error probabilities were estimated using the ideal decisions in Figure 2.2 (right).
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Consider now the quantized Gaussian measurement scenario. In Figure 2.10, we show the

average probabilities of false alarm and miss for different methods as functions of N . Observe

that

• as in Gaussian scenario, the average false-alarm and miss error probabilities of all ICM

methods decrease with N ;

• the average false-alarm probabilities of local t and nonparametric GLR tests attain the

specified level of 5% for large N ;

• for small N , the nonparametric ICM methods achieve smaller average false-alarm and

miss error probabilities than the Gaussian ICM method;

• due to the averaging effect, the Gaussian ICM method performs well when N is large.

Note that the error-probability results presented in Figure 2.9 and Figure 2.10 do not show

if the obtained event-region estimates were connected or not, which may be of interest in

practical applications.

2.6.4 MRF calibration

We utilize the calibration method in Section 2.5 to estimate the MRF model parameters a

and η. The training data were generated by randomly placing K = 1000 nodes on a 50m×50m

grid and simulating noisy realizations of a calibration field having constant mean µ > 0 within a

circular event region with radius 8m, see Figure 2.11. Twenty training data sets were generated

by varying the noise realizations, node locations, and values of the event-region mean µ. We

applied the calibration method proposed in Section 2.5 to fit each training data set and then

averaged the obtained estimates, yielding the final calibration results. To obtain the average

error probabilities in Figure 2.9 and Figure 2.10, the values of µ in the twenty training data

sets were generated by sampling from uniform (0.4, 1.4) distribution. To calibrate the ICM

algorithms whose results are shown in Figure 2.4- 2.8, we sampled µ from a wider range of

values [following the unform (0.4, 3.4) distribution]; the resulting calibration provided smaller
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Figure 2.11 Noiseless field used for calibration.

false-alarm probabilities and larger miss probabilities [compared with the results obtained by

sampling µ from unform (0.4, 1.4)].

2.7 Concluding remarks

We presented an HMRF framework for distributed localized estimation and detection in

sensor-network environments. We developed a calibration method for estimating the MRF

model parameters from the training data and discussed initialization of the proposed algo-

rithms. The proposed framework was applied to event-region detection.

Further research will include: extending the HMRF framework and ICM method to allow

tracking of the field changes over time, analyzing the impact of communication errors (among

the nodes) on the performance of the ICM method, comparing the ICM and message passing

approaches, relaxing the conditional independence assumption in ( 2.4), developing data aggre-

gation algorithms and energy-aware sensor-network design strategies for HMRFs (e.g., deciding

which nodes will be in ”alert” or ”sleeping” modes), and studying asymptotic properties of the

proposed methods as the number of measurements per node grows.

It is also of interest to relate the proposed ICM and distributed consensus approaches
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recently proposed in [54, 55, 74]. If we select a Gaussian MRF model structure and modify

the ICM iteration by replacing the measurements yk with the estimates of the hidden field βk

from the previous ICM cycle, the resulting algorithm closely resembles the average-consensus

scheme in [74]. Note that the consensus methods estimate global phenomena (e.g., the mean

field) whereas the ICM methods estimate localized features, which is an important distinction

between the two approaches.

Since the autologistic MRF model may be too simplistic for many applications, it is impor-

tant to develop more general process models that will allow utilizing multiple information bits

to describe the hidden field of interest. Here, it is of particular interest to derive physically

based process models and corresponding ICM methods.

2.8 Appendix A: Empirical likelihood and CRB for estimating µk

We derive the concentrated empirical log-likelihood expression in ( 2.24). This derivation

is similar to that in [62] and [64] and is given here for completeness. We utilize the method of

Lagrange multipliers to solve the constrained optimization problem in ( 2.20): Define

Gk = (

N∑

t=1

lnpk,t) + γk · (
N∑

t=1

pk,t − 1) − Nλk ·
N∑

t=1

pk,t[yk(t) − µk] (2.53)

where γk and λk are Lagrange multipliers. Forming a weighted sum of the partial derivatives

of Gk with respect to pk,t and setting the result to zero yields

0 =
N∑

t=1

pk,t
∂Gk

∂pk,t
= N + γk (2.54)

where the second equality follows by using the constraints
∑N

t=1 pk,t = 1 and
∑N

t=1 pk,t[yk(t)−

µk] = 0. Therefore γk = −N implying that

pk,t =
1

N
· 1

1 + λk[yk(t) − µk]
(2.55)

where λk = λk(µk) is chosen as a solution to

N∑

t=1

pk,t[yk(t) − µk] =
1

N
·

N∑

t=1

yk(t) − µk

1 + λk[yk(t) − µk]
= 0 (2.56)
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Substituting ( 2.55) into the multinomial log likelihood yields

N∑

t=1

lnpk,t = −N lnN + Ξk(λk; µk) (2.57)

where Ξk(λk; µk) was defined in ( 2.24). To satisfy ( 2.56), we need to minimize the above

expression with respect to λk, yielding the conplex dual formulation in ( 2.24). Assuming

( 2.19), all estimates of the multinomial probabilities need to satisfy

0 < pk,t =
1

N
· 1

1 + λk[yk(t) − µk]
< 1 (2.58)

and ( 2.25) is obtained by using the second inequality in ( 2.58) for all t ∈ {1, 2, . . . , N}.

Finally, the first two derivative of Ξk(λk; µk) with respect to λk are

∂Ξk(λk; µk)

∂λk
= −

N∑

t=1

yk(t) − µk

1 + λk[yk(t) − µk]

∂2Ξk(λk; µk)

∂λ2
k

= −
N∑

t=1

[yk(t) − µk]
2

{1 + λk[yk(t) − µk]}2

(2.59)

and the Newton-Raphson iteration ( 2.26) follows.

Least favorable families and CRB for µk under the empirical likelihood model:

We derive the CRB for µk under the empirical likelihood measurement-error model and sketch

a proof that the empirical-likelihood approach employs a least favorable nonparametric distri-

bution family for estimating µk.

We first differentiate the empirical log likelihood in ( 2.24) with respect to µk:

dlk(µk)

dµk
= Nλk(µk) (2.60)

which follows by using ( 2.55)-( 2.56) and the constraint
∑N

t=1 pk,t = 1. Then

d2lk(µk)

dµ2
k

= N · dλk(µk)

dµk
(2.61)

where dλk/dµk can be computed by differentiating ( 2.56) [with λk evaluated at λk(µk)]:

d

dµk
{

N∑

t=1

yk(t) − µk

1 + λk(µk)[yk(t) − µk]
} = 0 (2.62)
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leading to

dλk(µk)

dµk
= {

N∑

t=1

[yk(t) − µk]
2

{1 + λk(µk)[yk(t) − µk]}2
}−1 · {λk(µk) ·

N∑

t=1

yk(t) − µk

{1 + λk(µk)[yk(t) − µk]}2
− N}

(2.63)

and consequently,

−d2lk(µk)

dµ2
k

= {
N∑

t=1

[yk(t) − µk]
2

{1 + λk(µk)[yk(t) − µk]}2
}−1 · {N − λk(µk) ·

N∑

t=1

yk(t) − µk

{1 + λk(µk)[yk(t) − µk]}2
}

(2.64)

Then, assuming the discrete uniform distribution of the observations yk(1), yk(2), . . . , yk(N),

the CRB for estimating µk is given by ( 2.27), which follows from the fact that the discrete uni-

form distribution of the observations implies µk = yk and λk(yk) = 0. Note that ( 2.27) closely

resembles the well-known CRB expression for µk under the parametric Gaussian measurement-

error model in Section 2.4.1 (see e.g. [75]):

CRBG =
σ2

k

N
(2.65)

In particular, ( 2.27) is a good estimate of. Hence the empirical likelihood approach employs

a least favorable nonparametric distribution family for estimating µk. This conclusion follows

from the notion that a least favorable nonparametric family is one in which the estimation

problem (i.e. estimating µk in our case) is ”as hard as in a parametric problem” (corresponding

to the Gaussian measurement-error model in the above example), see also the discussion in

[62, 63, 72, 76].

2.9 Appendix B: Empirical entropy and CRB for estimating µk

We utilize Lagrange multipliers to solve the constrained optimization problem in ( 2.29)

[subject to the constraints ( 2.18)]: Define

Gk =
N∑

t=1

Npk,t + γk · (
N∑

t=1

pk,t − 1) − Nλk ·
N∑

t=1

pk,t[yk(t) − µk]

= N lnN + N
N∑

t=1

pk,tln(pk,t) + γk · (
N∑

t=1

pk,t − 1) − Nλk

N∑

t=1

pk,t[yk(t) − µk]

(2.66)
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where γk and λk are Lagrange multipliers. Setting the partial derivatives of Gk with respect

to pk,t to zero yields

N + γk + N ln(pk,t) − Nλk[yk(t) − µk] = 0 (2.67)

for t = 1, 2, . . . , N . Finding γk that satisfy the constraint
∑N

t=1 pk,t = 1 leads to the following

expressions for the multinomial probabilities:

pk,t =
exp{λk[yk(t) − µk]}∑N

τ=1 exp{λk[yk(τ) − µk]}
=

exp[λkyk(t)]∑N
τ=1 exp[λkyk(τ)]

(2.68)

Finally, the constraint
∑N

t=1 pk,t[yk(t) − µk] = 0 is satisfied by finding λk = λk(µk) that solves

N∑

t=1

exp{λk[yk(t) − µk]} · [yk(t) − µk] = 0 (2.69)

Note that ( 2.69) is an increasing function of λk and that satisfying ( 2.69) is equivalent

to minimizing ζk(λk; µk) in ( 2.31) with respect to λk. Finally, the first two derivations of

ζk(λk; µk) with respect to λk are

∂ζk(λk; µk)

∂λk
=

N∑

t=1

exp{λk[yk(t) − µk]} · [yk(t) − µk]

∂2ζk(λk; µk)

∂λ2
k

=
N∑

t=1

exp{λk[yk(t) − µk]} · [yk(t) − µk]
2

(2.70)

and the Newton-Raphson iteration ( 2.32) follows.

Least favorable families and CRB for µk under the empirical entropy model:

We derive the CRB for µk under the empirical entropy measurement-error model and sketch a

proof that the empirical-entropy approach employs a lease favorable nonparametric distribution

family for estimating µk.

We first differentiate the non-parametric log likelihood ( 2.33) for the empirical entropy

model with respect to µk:

dlk(µk)

dµk
= N · dλk(µk)

dµk
· (yk − µk) (2.71)

To derive ( 2.71), we have used the identity:

N∑

t=1

exp[λk(µk)yk(t)] · [yk(t) − µk] = 0 (2.72)
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which follows from ( 2.69). We now compute dλk(µk)/dµk by differentiating ( 2.72):

d

dµk
{

N∑

t=1

exp[λk(µk)yk(t)] · [yk(t) − µk]} = 0 (2.73)

leading to

dλk(µk)

dµk
=

∑N
t=1 exp[λk(µk)yk(t)]∑N

t=1 exp[λk(µk)yk(t)] · [yk(t) − µk]2
(2.74)

where we have used ( 2.72) to obtain ( 2.74). Finally,

d2lk(µk)

dµ2
k

= N · d2λk(µk)

dµ2
k

· (yk − µk) − N · dλk(µk)

dµk
(2.75)

Then, assuming the discrete unfrom distribution fo the observations yk(1), yk(2), . . . , yk(N),

we have µk = yk, λk(yk) = 0, and

−d2lk(yk)

dµ2
k

=
N

s2
k

(2.76)

which follows by using ( 2.74). Therefore, ( 2.27) holds, implying that estimating µk is as hard

as in a parametric Gaussian model and, consequently, the empirical approach employs a least

favorable nonparametric distribution family (see also Section 2.8).

2.10 Appendix C: ICM detection for the Gaussian measurement-error

model

Under the Gaussian measurement-error model ( 2.15) in Section 2.4.1, the conditional

predictive log likelihoods in ( 2.11) simplify to

Lk(1|Nβ(k)) = maxµk>0,σ2
k
{

N∑

t=1

lnpnoisek
(yk(t) − µk; σ

2
k)} + lnpβk|Nβ(k)(1|Nβ(k))

=






−N/2 − (N/2) · ln(s2
k) + lnpβk|Nβ(k)(1|Nβ(k)), yk > 0

−N/2 − (N/2) · ln(s2
0,k) + lnpβk|Nβ(k)(1|Nβ(k)), yk ≤ 0

Lk(0|Nβ(k)) = maxσ2
k
{

N∑

t=1

lnpnoisek
(yk(t); σ

2
k)} + lnpβk|Nβ(k)(0|Nβ(k))

= −N/2 − (N/2) · ln(s2
0,k) + lnpβk|Nβ(k)(0|Nβ(k))

(2.77)

and ( 2.38) follows.
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2.11 Appendix D: ICM detection for nonparametric measurement-error

models

We specialize Step (ICM2) of the ICM algorithm to the nonparametric measurement-error

models in Section 2.4.1. Here, the conditional predictive log likelihoods in ( 2.11) simplify to

Lk(1|Nβ(k)) = maxµk>0{lk(µk)} + lnpβk|Nβ(k)(1|Nβ(k))

Lk(0|Nβ(k)) = lk(0) + lnpβk|Nβ(k)(0|Nβ(k))

(2.78)

We now show that, for κ = 0 and κ = 1

maxµk>0[lk(µk)] =






−N lnN, yk > 0

lk(0), yk ≤ 0
(2.79)

Proof of ( 2.79) for empirical likelihood: Consider the empirical likelihood model

(κ = 0). Then, the result for yk > 0 follows from ( 2.22).

We now focus on the case where yk ≤ 0. Then, for µk > 0, the expression in ( 2.56) is

negative at λk = 0. Since ( 2.56) is a decreasing function of λk, the optimal λk which solves

( 2.56) for any µk > 0 must be negative. Then, ( 2.60) implies that, in this case, lk(µk) is a

decreasing function of µk and ( 2.79) follows.

Proof of ( 2.79) for empirical entropy: Consider now the empirical entropy model

(κ = −1). Then, the result for yk > 0 follows by noting that

• λk(yk) = 0 solves ( 2.69) and

• the non-parametric log likelihood for the empirical entropy model is maximized at µk =

yk, which follows by setting dlk(µk)/dµk in ( 2.71) to zero and noting that dλk(µk)/dµk

is always positive [see ( 2.74)].

In the case where yk ≤ 0 and µk > 0, the derivative dlk(µk)/dµk in ( 2.71) is negative.

Therefore, lk(µk) is a decreasing function of µk and ( 2.79) follows.

Finally, substituting ( 2.78) and ( 2.79) into ( 2.44) yields the result.
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2.12 Appendix E: GLR tests for µk under nonparametric

measurement-error models

We derive the empirical likelihood and entropy GLR tests in Section 2.4.4. Under the null

hypotheses H0,k: µk = 0, the asymptotic distribution of the GLR test statistics

2maxµk>0{lk(µk)} − 2lk(0) = [2N lnN − 2lk(0)] · i[0,∞)(yk) (2.80)

is given by, for l ≥ 0,

limN→∞P (lk ≤ l) =
1

2
P (χ2

1 ≤ l) +
1

2
(2.81)

which follows by adapting the results in [62, 64] (for empirical likelihood) and [71, 72] (for

empirical entropy) to the one-sided testing problem in Section 2.4. Here, χ2
1 denotes a random

variable having a central χ2 distribution with one degree of freedom and can be obtained by

squaring a standard normal random variable. The second term in ( 2.81) corresponds to the

probability that yk < 0 under H0,k, which is 1/2; in this case, the GLR test statistics ( 2.80)

becomes zero.

Note that ( 2.45) follows by using the square root of ( 2.80) as the test statistics, which

is possible because −N lnN − lk(0) are non-negative. Then, ( 2.81) implies that a specified

false-alarm probability PFA will be achieved by comparing

√
2[−N lnN − lk(0)] · i[0,∞)(yk) (2.82)

with the threshold τNP, computing using ( 2.46).
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CHAPTER 3. BAYESIAN SIGNAL ESTIMATION FOR SENSOR

NETWORKS IN THE PRESENCE OF NODE LOCALIZATION ERRORS

A paper submitted to IEEE Transactions on Signal Processing

Aleksandar Dogandžić and Benhong Zhang

Abstract

Signal processing methods developed so far for sensor-network environments have ignored

the effects of node localization inaccuracies. We propose a Bayesian framework that accounts

for the inherent uncertainties in the node locations (caused by the node localization errors)

and develop an estimation method that is robust to these uncertainties. We model the node

localization errors as zero-mean Gaussian random vectors whose covariances are known up to

a scaling factor. An ICM algorithm is developed to estimate the signal parameters of interest

and applied to energy-based acoustic source localization. Numerical simulations demonstrate

the performance of the proposed approach.

3.1 Introduction

Most nodes in a wireless sensor network estimate their locations [1, 30, 31]1. It is therefore

important to take into account the inherent uncertainties in the node locations (caused by the

localization errors) and incorporate them into the design of signal processing algorithms for

sensor-network environments. The node location uncertainties have been considered in [77]

in the context of coverage-oriented sensor deployment. In this paper, we propose a Bayesian

1Node localization is one of the canonical tasks in sensor networks [1] and is discussed in detail in
an excellent review article [30], see also reference therein.
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framework for taking into account the node localization errors, derive an ICM algorithm for es-

timating the phenomenon of interest, and apply it to energy-based acoustic source localization.

Centralized and distributed Bayesian methods have been proposed in [78, 79] for node local-

ization under the self-calibration scenario where no ”anchor” nodes are present. Here, we focus

on incorporating the node localization errors into the estimation of the physical phenomenon

measured by the network.

In Section 3.2, we introduce the measurement model and prior specifications. In Section 3.3,

we develop an ICM algorithm for approximate MAP estimation of the signal parameters. In

Section 3.5, the proposed algorithm is applied to energy-based acoustic source localization

and its performance is evaluated via numerical simulations. Concluding remarks are given in

Section 3.6.

3.2 Measurement model and prior specifications

Assume that a region of interest contains K+L active nodes (sensors) at locations xk, k =

1, 2, . . . , K and xR,l, l = 1, 2, . . . , L, where each node at location xk collects a measurement

yk and each reference node at location xR,l collects a measurement yR,l of the phenomenon of

interest. Here, the region of interest is an area of the network in the proximity of the desired

phenomenon, see Figure 3.1. The locations of the reference nodes are known exactly, which is

needed for node locolization.

Define y = [y1, y2, . . . , yK ]T , yR = [yR,1, yR,2, . . . , yR,L]T , x = [x1, x2, . . . ,xK ]T , and xR =

[xR,1, xR,2, . . . ,xR,L]T , where ”T ” denotes a transpose. Furthermore, denote by

• φ the vector of unknown signal parameters describing the measurement phenomenon and

• p(yk|φ, xk) the conditional pdf/pmf of the measurement yk given φ and sensor location

xk, for k = 1, 2, . . . , K2.

2An analogous definition holds for p(yR,l|φ,xR,l).
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3.2.1 Measurement-error model

We model the measurements yk, k = 1, 2, . . . , K and yR,l, l = 1, 2, . . . , L as conditional

independent random variables given φ, xk and xR,l, implying that the conditional pdf or pmf

of al measurements y and yR given φ, x and xR (i.e. the likelihood function) is3

p(y|φ, x) · p(yR|φ, xR) =
K∏

k=1

p(yk|φ, xk) ·
L∏

l=1

p(yR,l|φ, xR,l) (3.1)

Partly linear signal in white Gaussian noise: We now specialize the general measure-

ment model in ( 3.1) to a practically important scenario where partly linear signal a · s(θ, xk)

is corrupted by spatially white Gaussian noise:

yk = f(φ,xk) + ek = a · s(θ, xk) + ek (3.2)

which also holds for the reference nodes, with yk, xk and ek replaced by yR,l, xR,l and el.

Here, ek and el denote zero-mean i.i.d. Gaussian noise with known variance σ2 (which can be

estimated in the calibration stage from noise-only data). The parametric signal a · s(θ, xk) is

described by the r × 1 nonlinear parameter vector

θ = [θ1, θ2, . . . , θr]
T (3.3)

and scalar linear parameter a. Consequently, the vector of all signal parameters is

φ = [θ, a]T (3.4)

Let us denote by N(z; µ, Σ) the Gaussian pdf of a random vector z with mean µ and

covariance Σ. The model in ( 3.1) and ( 3.2) implies that, given φ and x, yk are conditionally

independent with Gaussian pdfs

p(yk|φ, xk) = N(yk; a · s(θ, xk), σ
2) =

1√
2πσ2

· exp

{
− [yk − a · s(θ, xk)]

2

2σ2

}
(3.5)

and a similar expression holds for the reference nodes.

In the following, we adopt the partly linear signal and Gaussian noise models and compute

the likelihood function for the measurement y and yR by substituting ( 3.5) and the analogous

3If the region of interest does not contain reference nodes (i.e. L = 0) then the second term in ( 3.1)
is identically equal to one.
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expression for yR into ( 3.1). However, our approach is general and applicable to non-Gaussian

noise models as well.

3.2.2 Node location error model

We assume that the node locations xk, k = 1, 2, . . . , K are unknown and that their estimates

wk, k = 1, 2, . . . , K are available and modeled as:

wk = xk + uk (3.6)

Here, uk are node location errors, modeled as zero-mean independent Gaussian random vectors

with covariances σ2
u · Uk, where

• σ2
u is the unknown location error variance parameter and

• Uk are known symmetric positive definite matices.

Therefore,

p(wk|xk, σ
2
u) = N(wk; xk, σ

2
uUk) =

1

2πσ2
u · |Uk|1/2

· exp

[
−(wk − xk)

T U−1
k (wk − xk)

2σ2
u

]
(3.7)

where | · | denotes the determinant. To facilitate node localization, we further assume that the

exact locations xR,l, l = 1, 2, . . . , L of the reference nodes are known, see also Section 3.5.1.

The estimates wk are obtained using a node localization algorithm, which also provides the

matrices Uk. In particular, we choose Uk as estimated CRB matrices for the node locations

xk, k = 1, 2, . . . , K, see ( 3.26) in Section 3.5. We adopt a simplifying assumption that the

node location estimates wk are conditionally independent given xk and σ2
u:

p(w|x, σ2
u) =

K∏

k=1

p(wk|xk, σ
2
u) (3.8)

where w = [wT
1 , wT

2 , . . . ,wT
K ]T .

Finally, we assume that the node location errors are non-differential:

p(yk|φ, xk, wk) = p(yk|φ, xk), k = 1, 2, . . . , K (3.9)
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or equivalently, the node location estimates wk and measurements yk are conditionally inde-

pendent given xk.

Define the vector of all unknown parameters:

ξ = [φT , xT , σ2
u]T (3.10)

and the vector of all ”observations” (i.e. measurements y and yR and node location estimates

w):

v = [yT , yT
R, wT ]T (3.11)

under the signal and location-error models ( 3.1)-( 3.8).

3.2.3 Prior specifications

Assume that the signal and node location parameters are independent a priori4:

πξ = πθ(θ) ·
[

K∏

k=1

πxk
(xk)

]
· πa(a) · πσ2

u
(σ2

u) (3.12)

xk is the location of the kth node in Cartesian coordinates. We focus on a two-dimensional

(2-D) network model with

xk = [xk,1, xk,2]
T , k = 1, 2, . . . , K (3.13)

and adopt the following simple uniform-distribution priors:

πxk
(xk) = πxk,1

(xk,1) · πxk,2
(xk,2)

πxk,1
(xk,1) = uniform(x1,MIN, x1,MAX)

πxk,2
(xk,2) = uniform(x2,MIN, x2,MAX)

πa(a) = uniform(aMIN, aMAX)

πθ(θ) =
r∏

i=1

πθi
(θi)

πθi
(θi) = uniform(θi,MIN, θi,MAX), i = 1, 2, . . . , r

πσ2
u
(σ2

u) = uniform(1, σu2,MAX)

(3.14)

4Here, πξ(ξ) denotes the prior pdf of ξ and analogous notation is used for the prior pdfs of the
components of ξ.
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Since Uk, k = 1, 2, . . . , K are estimated CRBs of the node locations, we have restricted σ2
u to

be bounded from below by unity, see ( 3.14). This choice is motivated by the CRB inequality

which states that the covariances of the node location estimates are lower-bounded by their

CRBs [75].

3.3 Bayesian analysis

We now develop a Bayesian approach for estimating the signal parameters φ under the

measurement and prior models in Section 3.2. The joint posteriro distribution of all parameters

ξ follows by using ( 3.1)-( 3.9):

p(ξ|v) ∝ p(y|φ, x) · p(yR|φ, xR) · p(w|x, σ2
u) · πξ(ξ)

=

[
K∏

k=1

p(yk|φ, xk) · p(wk|xk, σ
2
u) · πxk

(xk)

]
·
[

L∏

l=1

p(yR,l|φ, xR,l)

]
· πφ(φ) · πσ2

u
(σ2

u)

(3.15)

Then, using the Gaussian likelihoods for the measurement ( 3.1) [see also ( 3.5)] and node

locations ( 3.7)-( 3.8) yields

p(ξ|v) ∝ 1

σ2K
u

· exp

(
−

K∑

k=1

{
[yk − a · s(θ, xk)]

2

2σ2
+

(wk − xk)
T U−1

k (wk − xk)

2σ2
u

})

· exp

{
−

L∑

l=1

[yR,l − a · s(θ, xR,l)]
2

2σ2

}
·
[

K∏

k=1

πxk
(xk)

]
· πa(a) · πθ(θ) · πσ2

u
(σ2

u)

(3.16)

Our goal is to estimate the signal parameters φ by maximizing the joint posterior distribution

( 3.15). We utilize the iterative conditional modes algorithm (see [56, 58]) to perform this

maximization, yielding the posterior mode (MAP estimate) of ξ. Our ICM algorithm iterates

between the following conditional maximization steps:

1. Fix x = x̂ and obtain an estimate φ̂ of φ by maximizing its full conditional posterior

pdf p(φ|x, xR, y, yR):

φ̂ = argmaxφ

{
[

K∏

k=1

p(yk|φ, xk)] · [
L∏

l=1

p(yR,l|φ, xR,l)] · πφ(φ)

}

= argminφ∈Φ

{
K∑

k=1

[yk − a · s(θ, xk)]
2 +

L∑

l=1

[yR,l − a · s(θ, xR,l)]
2

} (3.17)
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easily performed using an r-dimensional nested Gauss-Newton iteration, see Section 3.7.

Here,

Φ = {φ : a ∈ [aMIN, aMAX], θi ∈ [θi,MIN, θi,MAX], i = 1, 2, . . . , r} (3.18)

denotes the parameter space of the signal parameters φ.

2. Fix φ = φ̂ and σ2
u = σ̂2

u and estimate x as

x̂ = [x̂T
1 , x̂T

2 , . . . , x̂T
K ]T (3.19)

where x̂k is an estimate of xk obtained by maximizing its full conditional posterior pdf

p(xk|φ, σ2
u, yk, wk):

x̂k = argmaxxk
[p(yk|φ, xk) · p(wk|xk, σ

2
u) · πxk

(xk)]

= argmaxxk∈χk
λk(xk|φ, σ2

u, yk, wk)

(3.20)

easily performed using the Fisher scoring iteration derived in Section 3.8. Here, χk =

{xk : xk,i ∈ [xi,MIN, xi,MAX], i = 1, 2} denotes the parameter space of xk and

λk(xk|φ, σ2
u, yk, wk) = − [yk − as(θ, xk)]

2

2σ2
− (wk − xk)

T U−1
k (wk − xk)

2σ2
u

(3.21)

can be viewed as a penalized log-likelihood function of xk, k = 1, 2, . . . , K. Note that the

above estimation of x1, x2, . . . ,xK decouples due to the simplifying assumption that the

wks are conditionally independent given xk and σ2
u, see ( 3.8).

3. Fix φ = φ̂ and x = x̂ and compute an estimate of σ2
u:

σ̂2
u =






s2
u, 1 ≤ s2

u < σ2
u,MAX

1, s2
u < 1

σ2
u,MAX, s2

u > σ2
u,MAX

(3.22)

where

s2
u =

∑K
k=1(wk − xk)

T U−1
k (wk − xk)

2K
(3.23)

Here, the estimate in ( 3.22) has been obtained by maximizing the full conditional pos-

terior pdf of σ2
u, i.e. p(σ2

u|x, w).
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The iteration 1-3 is performed until the estimates of φ, x and σ2
u do not change significantly

between two consecutive cycles, indicating convergence. Upon convergence, we obtain a joint

posterior mode of φ, x and σ2
u. If the algorithm converges to the global maximum of ( 3.15),

then it provides the MAP estimates of these parameters5.

3.4 Cramer-Rao bound for the signal parameters

We derive the (non-Bayesian) CRB expression for the unknown signal parameters φ under

the measurement model in Section 3.2.1:

CRBφ =




CRBθ CRBθ,a

CRBa,θ CRBa





=

{
K∑

k=1

Ξ(φ, xk)/σ2

1 + σ2
u(a/σ)2 · ∂s(θ, xk)/∂xT

k · Uk · ∂s(θ, xk)/∂xk
+

L∑

l=1

Ξ(φ, xR,l)/σ2

}−1

(3.24)

where [see also ( 3.2)]

Ξ(φ, xk) =
∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂φT

=




a2 · ∂s(θ, xk)/∂θ · ∂s(θ, xk)/∂θT a · s(θ, xk) · ∂s(θ, xk)/∂θ

a · s(θ, xk) · ∂s(θ, xk)/∂θT s2(θ, xk)




(3.25)

Interestingly, CRBθ depends on the linear parameter a and noise standard deviation σ only

through (a/σ)2, which is easily verified by applying the formula for the inverse of a partitioned

matrix to ( 3.24).

High SNR scenario: Even when the SNR is high (i.e. a is large), ( 3.24) is not zero

except L ≥ 3 (i.e. no less than 3 reference nodes are used in target localization).

Detailed CRB (and asymptotic CRB under high SNR) derivation can be found in Sec-

tion 3.8

5Note that classical iterative nonlinear estimation methods (e.g. least squares, discussed in Sec-
tion 3.5.5) also do not guarantee convergence to the global optimum.
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3.5 Numerical examples: energy-based acoustic source localization

We evaluate the estimation accuracy of the ICM algorithm via numerical simulations and

compare it with the existing techniques. We first describe

• the node localization scheme used to obtain the location estimates w (Section 3.5.1),

• acoustic source-signal model (Section 3.5.2),

• prior specifications (Section 3.5.3)

• initialization scheme for starting the proposed iteration (Section 3.5.4)

and then present numerical simulation results in Section 3.5.5.

Throughout this section, we consider a 2-D sensor network with 30 nodes placed in a

square region measuring 15 × 15m2. Three reference nodes are located in the corners whereas

the remaining nodes are randomly (uniformly) distributed within the network area, as depicted

in Figure 3.1.

Figure 3.1 A 2-D sensor network with 30 nodes and a region of interest in

the proximity of an acoustic source.
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3.5.1 Node localization

We utilize TOA measurements between all node pairs within the network to localize the

nodes. Note that three reference nodes are employed to facilitate the node localization, see

also Figure 3.1. The TOA measurement between nodes at locations xk and xm is modeled as

a Gaussian random variable with mean ‖xk − xm‖/c and the constant variance σ2
TOA, where,

c denotes the speed of propagation of the TOA signal, see e.g. [31]6. To localize the nodes, we

apply the ML relative location estimation algorithm in [31]. Within the region of interest, this

algorithm yields the ML estimates wk, k = 1, 2, . . . , K of the node locations xk, k = 1, 2, . . . , K.

The 2 × 2 CRB matrices CRBTOA,xk
(x) for the node locations xk, k = 1, 2, . . . , K can be

computed using [31]. We choose Uk as estimated CRB matrices of the locations xk (see also

in Section 3.2.2):

Uk = CRBTOA,xk
(x)|x=w = CRBTOA,xk

(w) (3.26)

where CRBTOA,xk
(w) are the corresponding 2 × 2 blocks of the ”global” CRB in [31].

An average node-location CRB

crbTOA(x) =
1

K + L
·

K∑

k=1

tr[CRBTOA,xk
(x)] (3.27)

is a good measure of the overall node location uncertainty within the region of interest. It

scales linearly with the ranging-error variance c2σ2
TOA, see [31].

3.5.2 Signal and noise models for energy-based acoustic source localization

We consider an acoustic source localization problem where yk is the sample mean (obtained

by averaging over a time window) of the received energy measurements collected at node k

[80, 81]. We adopt the partly linear signal and white Gaussian noise models in ( 3.2)-( 3.5)

with the following isotropic acoustic-energy attenuation function (see [22]):

s(θ, xk) =
1

1 + β · ‖θ − xk‖2α
(3.28)

where

6Here, ‖xk − xm‖ =
√

(xk − xm)T (xk − xm) denotes the Euclidean distance between locations xk

and xm in Cartesian coordinates.
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• θ = [θ1, θ2]
T is the unknown source location in Cartesian coordinates (implying that

r = 2) and

• α and β are the (known) energy attenuation function parameters.

(Similar signal and noise models were used in [18, 80–82] and have been experimentally val-

idated in [82].) Since yk, k = 1, 2, . . . , K correspond to energy measurements, we define the

average SNR (in decibels) as follows [see also ( 3.2)]:

SNR = 10log10

[
1

K + L
· (

K∑

k=1

f(φ, xk)/σ +

L∑

l=1

f(φ, xR,l)/σ)

]
(3.29)

To generate the simulated data, we have chosen the following source-signal energy [i.e. a,

see ( 3.2)], location, and attenuation-function parameters:

a = 30, θ = [7.5m, 7.5m]T , α = 1, β = 4 (3.30)

3.5.3 Prior specifications

We selected the same prior pdf boundaries θi,MIN = xi,MIN = 0 and θi,MAX = xi,MAX =

15m, i ∈ {1, 2} for the source and node locations, see also ( 3.14). Observe that the rectangle

defined by θi,MIN, θi,MAX, i ∈ {1, 2} covers the entire 15 × 15m2 network area, see Figure 3.1.

Under the energy-based acoustic source localization scenario, the linear parameter a in

( 3.2) is the source-signal energy, implying that aMIN ≥ 0. We chose the prior pdfs in ( 3.14)

with aMIN = 0, aMAX = 500 and σu,MAX = 3.

Since the above prior pdfs are fairly vague, the ICM estimates of φ are approximately equal

to their (non-Bayesian) ML estimates under the measurement model in Section 3.2.1. Hence,

in this case, the signal-parameter CRB in Section 3.4 is valid benchmark for the achievable

signal estimation performance.

3.5.4 Initialization

Following the approach in [18], we compute an initial estimate of the unknown signal

parameters θ by averaging the wks and xR,ls of the nodes within the region of interest whose
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measurements (yk and yR,l, respectively) are higher than a specified threshold τ :

θ(0) =

∑K
k=1 wk · i[τ,∞)(yk) +

∑L
l=1 xR,l · i[τ,∞)(yR,l)

∑K
k=1 i[τ,∞)(yk) +

∑L
l=1 i[τ,∞)(yR,l)

(3.31)

where

iA(x) =






1, x ∈ A

0, otherwise
(3.32)

denotes the indicator function. In this section, we average the locations of the nodes having

the n = 10 largest measurements, implying the following choice of τ :

τ = y(10) (3.33)

where y(10) denotes the 10th largest measurement (order statistic) observed among the nodes

within the region of interest. Once θ(0) is computed, we can obtain an initial estimate of the

linear parameter a using ( 3.44) in Section 3.7, with i set to zero.

Initial estimates of the node locations xk, k = 1, 2, . . . , K are chosen to coincide with their

estimates provided by the node localization algorithm:

x
(0)
k = wk, k = 1, 2, . . . , K (3.34)

3.5.5 Simulation examples

We now describe the simulation scenarios and present numerical simulation results. Sim-

ulated data were generated using the acoustic measurement-error model in Section 3.2.1

and 3.5.2 with signal and noise parameters in ( 3.30). The node location estimates wk, k =

1, 2, . . . , K are obtained from TOA measurements using the ML relative location estimation

algorithm, outlined in Section 3.5.1 and [31].

We compare our ICM algorithm in Section 3.3 with the (classical) LS signal parameter

estimator. This LS estimator is derived by assuming that the node locations are exactly known

and given by wk, k = 1, 2, . . . , K and xR,l, l = 1, 2, . . . , L. Consequently, [see also ( 3.17)]:

φ̂LS = argmaxφ[p(y|φ, w) · p(yR|φ, xR) · πφ(φ)]

= argminφ∈Φ

{
K∑

k=1

[yk − a · s(θ, wk)]
2 +

L∑

l=1

[yR,l − a · s(θ, xR,l)]
2

} (3.35)
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If we utilize the initial values of x
(0)
k = wk then Step 1 of the first ICM cycle provides exactly

the above LS estimate, see ( 3.17) and ( 3.18). Using a Taylor-series expansion approach,

we derive an approximate analytical expression for the covariance matrix of the LS estimator

under the measurement model in Section 3.2.1 (see Section 3.9 for detailed derivation):

Cov(φ̂LS) ≈σ2 · P (φ, x)−1 + σ2
u · P (φ, x)−1

K∑

k=1

[
σ2 · ∂2f(φ, xk)

∂φ∂xT
k

Uk
∂2f(φ, xk)

∂xk∂φT

+
∂f(φ, xk)

∂φ

∂f(φ, xk)

∂xT
k

Uk
∂f(φ, xk)

∂xk

∂f(φ, xk)

∂φT

]
P (φ, xk)

−1

(3.36)

where

P (φ, x) =
K∑

k=1

Ξ(φ, xk) +
L∑

l=1

Ξ(φ, xR,l) (3.37)

where Ξ(φ, xk) was defined in 3.25.

In the examples presented here, we define the region of interest as a set containing K = 10

nodes with the ten largest measurements within the network, yk, k = 1, 2, . . . , 10. [Figure 3.1

depicts a typical (most likely) region of interest; observe that there are no reference nodes in

this region.] Our performance metric is the average MSE of an estimator calculated using 2000

independent trials, where averaging is performed over independent measurement and TOA

noise realization, as well as random realizations of the region of interest. Here, we present the

total average MSEs for the source-location estimates:

MSE(θ) = MSE(θ1) + MSE(θ2) (3.38)

where ”MSE” denotes averaging over random realizations of the region of interest. In Fig-

ure 3.2, we show the average MSEs for the ICM and LS methods and correspoinding analytical

accuracy measures, tr[CRBθ], tr[CRBθ|largea], and tr[Cov(θ̂LS)] [see Section 3.8 and 3.9 for

detailed derivation] as functions of the average node-location crbTOA [computed using ( 3.27)],

for the following average SNRs: SNR = 7dB and SNR = 12dB [computed using ( 3.29)]. The

ICM method converged in 10 iteration steps. [Here, we vary crbTOA by changing the ranging-

error variance c2σ2
TOA. If there are no reference nodes in the region of interest, tr[CRBθ|largea]

and tr[Cov(θ̂LS)] increase linearly with c2σ2
TOA, see also Figure 3.2.] Clearly, our ICM method
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outperforms the LS estimator which ignores the node localization inaccuracies. The perfor-

mance difference between the two methods increases as the node location uncertainty increases.

As expected, tr[CRBθ|largea] does not dependent on SNR.
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Figure 3.2 Average MSEs, CRBs, and approximate covariances for the

ICM and LS source location estimates as functions of the av-

erage node-location CRB, for (Left) SNR = 7dB and (Right)

SNR = 12dB.

In Figure 3.3, we show the average MSEs for the ICM and LS methods and corresponding

analytical accuracy measures as a function of SNR, for crbTOA = 0.02 and crbTOA = 0.2.

As expected, the ICM method outperforms the LS estimator. Observe that our approximate

analytical expression for the covariance matrix of the LS estimator is less accurate at high

SNRs.

3.6 Concluding remarks

We proposed a Bayesian framework for taking into account node localization inaccuracies

and developed an estimation method that is robust to these inaccuracies. This framework

provides significant performance improvements compared with methods that ignore the node

localization errors.

Further research will include: experimentally validating the proposed approach and study-

ing its robustness to node-location-error model assumption (i.e. choices of the Uks and unform
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Figure 3.3 Average MSEs, CRBs, and approximate covariances for the

ICM and LS source location estimates as functions of SNR,

for (Left) crbTOA = 0.02m2 and (Right) crbTOA = 0.2m2.

degradation assumption in Section 3.2.2), and developing distributed implementations of our

methods. We will aslo extend the proposed approach to the spatio-temporal measurement

scenario where we will develop tracking algorithms (utilizing e.g. related ideas from robotics

[83]) and estimate the measurement-error model (using e.g. empirical likelihood [62]).

3.7 Appendix A: Step 1 and 2 of the ICM algorithm

Step 1: We derive an r-dimensional nested Gauss-Newton algorithm for efficient estimation

of φ in Step 1 of the ICM algorithm, see also Section 3.3.

Let us first compute

K∑

k=1

∂[as(θ, xk)]

∂φ
· ∂[as(θ, xk)]

∂φT
+

L∑

l=1

∂[as(θ, xR,l)]

∂φ
· ∂[as(θ, xR,l)]

∂φT

=




a2 · A(θ, x, xR) a · b(θ, x, xR)

a · b(θ, x, xR)T c(θ, x, xR)





(3.39)
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where

A(θ, x, xR) =
K∑

k=1

∂s(θ, xk)

θ
· ∂s(θ, xk)

θT
+

L∑

l=1

∂s(θ, xR,l)

θ
· ∂s(θ, xR,l)

θT

b(θ, x, xR) =

K∑

k=1

∂s(θ, xk)

θ
· s(θ, xk) +

L∑

l=1

∂s(θ, xR,l)

θ
· s(θ, xR,l)

c(θ, x, xR) =
K∑

k=1

s2(θ, xk) +
L∑

l=1

s2(θ, xR,l)

(3.40)

The upper left block of the inverse of ( 3.39) is

1

a2
· Q(θ, x, xR) (3.41)

where

Q(θ, x, xR) =

[
A(θ, x, xR) − b(θ, x, xR)b(θ, x, xR)T

c(θ, x, xR)

]−1

(3.42)

Now, the nested Gauss-Newton iteration can be written as follows7:

θ(i+1) = θ(i) + δ
(i)
θ · 1

a(i)
· Q(θ(i), x, xR) · q(θ(i), a(i), x, xR) (3.43)

where

a(i) =






â(θ(i), x, xR), aMIN ≤ a(θ(i), x, xR) < aMAX

aMIN, a(θ(i), x, xR) < aMIN

aMAX, a(θ(i), x, xR) > aMAX

a(θ(i), x, xR) =

{
K∑

k=1

yks(θ, xk) +
K∑

l=1

yR,ls(θ, xR,l)

}
/c(θ, x, xR)

q(θ, a,x, xR) =

K∑

k=1

∂s(θ, xk)

∂θ
· [yk − a · s(θ, xk)] +

L∑

l=1

∂s(θ, xR,l)

∂θ
· [yk − a · s(θ, xR,l)]

(3.44)

and the damping factor 0 < δ
(i)
θ ≤ 1 is chosen (at every step i) to ensure that the conditional

posterior pdf p(φ|x, xR, y, yR) increases or, equivalently, that cost function in ( 3.17) decreases

and the elements of θ remain within the parameter space. Upon convergence (i.e. as i → ∞),

we obtain estimates of the signal parameters θ̂ = θ(∞) and â = a(∞) and, consequently,

φ̂ = [(θ(∞))T , a(∞)]T .

7Nested Newton-type algorithms are discussed in detail in [84].
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Energy-based acoustic source localization: For the energy-based acoustic source localization

problem with isotropic acoustic-energy attenuation model ( 3.28), we have

∂s(θ, xk)

∂θ
= − 2αβ · ‖θ − xk‖2(α−1)

(1 + β · ‖θ − xk‖2α)2
· (θ − xk) (3.45)

and an analogous expression for the reference nodes is obtained by replacing xk by xR,l.

Step 2: We propose a Fisher scoring iteration to perform the maximizations in ( 3.20) [see

also ( 3.21)]:

x
(i+1)
k = x

(i)
k + δ

(i)
xk

· [Ixk
(x

(i)
k ; φ, σ2

u)]−1 ∂λk(x
(i)
k |φ, σ2

u)

∂xk
(3.46)

where

∂λk(xk|φ, σ2
u, yk)

∂xk
= a · yk − as(θ, xk)

σ2
· ∂s(θ, xk)

∂xk
+

1

σ2
u

· U−1
k (wk − xk)

Ixk
(xk; φ, σ2

u) = Eyk|φ,xk

[
−∂2λk(xk|φ, σ2

u, yk)

∂xk∂xT
k

]

=
a2

σ2
· ∂s(θ, xk)

∂xk
· ∂s(θ, xk)

∂xT
k

+
1

σ2
u

· U−1
k

(3.47)

and the damping factor 0 < δ
(i)
xk

≤ 1 is chosen (at every step i) to ensure that ( 3.21) increases

and x
(i+1)
k remains within the interval specified by the prior pdfs of the components of xk in

( 3.14).

Energy-based acoustic source localization: For the energy-based acoustic source localization

problem with isotropic acoustic-energy attenuation model ( 3.28), we have

∂s(θ, xk)

∂xk
=

2αβ · ‖θ − xk‖2(α−1)

(1 + β · ‖θ − xk‖2α)2
· (θ − xk) (3.48)

3.8 Appendix B: CRB for ICM algorithm

Define

z = [φ, x]T (3.49)

and

µ = [f(φ, x1), f(φ, x2), . . . , f(φ, xK), f(φ, xR,1), f(φ, xR,2), . . . , f(φ, xR,L)]T (3.50)
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Then the FIM of z is

I =
1

σ2
· ∂fT

∂z

∂f

∂zT
+

∂xT

∂z
· diag{U−1

1 , U−2
2 , . . . , U−1

K } · ∂x

∂zT

=
1

σ2
· ∂fT

∂z

∂f

∂zT
+

1

σ2
u

·




0 0

0 diag{U−1
1 , U−2

2 , . . . , U−1
K }




(3.51)

where

∂fT

∂z
=





∂f(φ,x1)
∂φ

∂f(φ,x2)
∂φ

· · · ∂f(φ,xK)
∂φ

∂f(φ,xR,1)
∂φ

· · · ∂f(φ,xR,L)
∂φ

∂f(φ,x1)
∂x1

0 · · · 0 0 · · · 0

0 ∂f(φ,x2)
∂x2

· · · 0 0 · · · 0

...
...

...
...

...
...

...

0 0 · · · ∂f(φ,xK)
∂xK

0 · · · 0





(3.52)

Consequently,

I =





1
σ2 (

∑K
k=1 FFk +

∑L
l=1 FFR,l)

1
σ2 FX1 · · · 1

σ2 FXK

1
σ2 FXT

1
1
σ2 XX1 + 1

σ2
u
U−1

1 · · · 0

1
σ2 FXT

2 0 · · · 0

...
...

...
...

1
σ2 FXT

K 0 · · · 1
σ2 XXK + 1

σ2
u
U−1

K





(3.53)

where

FFk =
∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂φT

FFR,l =
∂f(φ, xR,l)

∂φ
· ∂f(φ, xR,l)

∂φT

FXk =
∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂xT
k

XXk =
∂f(φ, xk)

∂xk
· ∂f(φ, xk)

∂xT
k

(3.54)

Then, the CRB for φ is

CRBφ =

[
(

K∑

k=1

FFk +
L∑

l=1

FFR,l)/σ2 − 1

σ4

K∑

k=1

FXk · [(1/σ2) · XXk + (1/σ2
u) · U−1

k ]−1 · FXT
k

]−1

= σ2 ·
[

K∑

k=1

{FFk − FXk · [XXk + σ2/σ2
u · U−1

k ]−1 · FXT
k } +

L∑

l=1

FFR,l

]−1

(3.55)
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with the following simplification

FFk − FXk · [XXk + σ2/σ2
u · U−1

k ]−1 · FXT
k

=
∂f(φ, xk)

∂φ
·
{

1 − ∂f(φ, xk)

∂xT
k

· [∂f(φ, xk)

∂xk
· ∂f(φ, xk)

∂xT
k

+
σ2

σ2
u

· U−1
k ]−1 · ∂f(φ, xk)

∂xk

}
· ∂f(φ, xk)

∂φT

=
∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂φT
·
[
1 + (σ2

u/σ2) · ∂f(φ, xk)

∂xT
k

Uk
∂f(φ, xk)

∂xk

]−1

(3.56)

Finally,

CRBφ =σ2 ·
{

K∑

k=1

∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂φT
·
[
1 + (σ2

u/σ2) · ∂f(φ, xk)

∂xT
k

Uk
∂f(φ, xk)

∂xk

]−1

+

L∑

l=1

∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂φT

}−1 (3.57)

Plug in the expression in ( 3.2), we have

CRBφ =σ2 ·






K∑

k=1




a2 · ∂s(θ, xk)/∂θ · ∂s(θ, xk)/∂θT a · s(θ, xk) · ∂s(θ, xk)/∂θ

a · s(θ, xk) · ∂s(θ, xk)/∂θT s2(θ, xk)





1 + a2(σ2
u/σ2) · ∂s(θ, xk)/∂xT

k · Uk · ∂s(θ, xk)/∂xk

+
L∑

l=1




a2 · ∂s(θ, xR,l)/∂θ · ∂s(θ, xR,l)/∂θT a · s(θ, xR,l) · ∂s(θ, xR,l)/∂θ

a · s(θ, xR,l) · ∂s(θ, xR,l)/∂θT s2(θ, xR,l)










−1

(3.58)

CRB for source location at high SNR: We now analyze the CRB expression for the

source location θ in the scenario where the source-signal energy a is large (and, consequently,
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the signal-to-noise ratio is high). Define

P = P (θ, x) =
K∑

k=1

∂s(θ, xk)/∂θ · ∂s(θ, xk)/∂θT

∂s(θ, xk)/∂xT
k · Uk · ∂s(θ, xk)/∂xk

q = q(θ, x) =
K∑

k=1

s(θ, xk) · ∂s(θ, xk)/∂θ

∂s(θ, xk)/∂xT
k · Uk · ∂s(θ, xk)/∂xk

r = r(θ, x) =
K∑

k=1

s2(θ, xk)

∂s(θ, xk)/∂xT
k · Uk · ∂s(θ, xk)/∂xk

SR = SR(θ) =
L∑

l=1

∂s(θ, xR,l)

∂θ
· ∂s(θ, xR,l)

∂θT

vR = vR(θ) =

L∑

l=1

s(θ, xR,l) ·
∂s(θ, xR,l)

∂θ

ωR = ωR(θ) =
L∑

l=1

s2(θ, xR,l)

(3.59)

To simplify the notation, we omit the dependencies of P , q, and R on θ and x and the

dependencies of SR, vR, and ωR on θ. Now the CRB expressions for φ and θ at large SNR

can be approximated by

CRBφ|large a = σ2 ·




a2 · SR + (σ2/σ2

u) · P a · vR + (σ2/σ2
u) · q/a

a · vT
R + (σ2/σ2

u) · qT /a ωR + (σ2/σ2
u) · r/a2





−1

(3.60)

and

CRBθ|large a

= σ2 ·
{

a2 · SR + (σ2/σ2
u) · P − [a · vR + (σ2/σ2

u) · q/a] · [a · vR + (σ2/σ2
u) · q/a]T

ωR + (σ2/σ2
u) · r/a2

}−1

(3.61)

where ( 3.61) follows by using the formula for the inverse of a partitioned matrix in e.g. [85].

Consider now the case where no reference nodes are present in the region of interest (i.e.

L = 0) and the signal amplitude a is large. Then ( 3.60) and ( 3.61) simplify to

CRBφ|large a = σ2
u ·




P (1/a) · q

(1/a) · qT (1/a2) · r





−1

(3.62)

CRBθ|large a = σ2
u · (P − qqT /r)−1 (3.63)
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Note that ( 3.63) does not depend on a and σ2. Hence, for large a and L = 0, the estimation

accuracy is limited by the node location uncertainties.

Consider now the scenario where one or more reference nodes are present in the region of

interest (i.e. L > 0). If SR − vRvT
R/ωR is positive definite (which holds with probability one

if L ≥ 3), then

CRBθ|large a = 0 (3.64)

If 1 ≤ L ≤ 2, then SR − vRvT
R/ωR is singular and

CRBθ|large a ≈ σ2 ·
{

a2 · (SR − vRvT
R/ωR) + (σ2/σ2

u) ·
[
P +

r · vRvT
R

ω2
R

− qvT
R

ωR
− vRqT

ω

]}−1

(3.65)

which follows from ( 3.61) by using the following approximation:

a2vRvT
R

ωR + (σ2/σ2
u) · r/a2

≈ a2 · vRvT
R

ωR
·
[
1 − (σ2/σ2

u) · r

a2ωR

]
(3.66)

For L = 1, SR − vRvT
R/ωR = 0, and

CRBθ|large a ≈σ2
u ·

[
P +

r

s2(θ, xR,1)
· ∂s(θ, xR,1)

∂θ
· ∂s(θ, xR,1)

∂θT

− q

s(θ, xR,1)
· ∂s(θ, xR,1)

∂θT
− ∂s(θ, xR,1)

∂θ
· q

s(θ, xR,1)

]−1 (3.67)

For L = 2, SR − vRvT
R/ωR is nonzero singular matrix and

[CRBθ]1,1|large a = σ2 · [SR − vRvT
R/ωR]2,2

(σ2/σ2
u) · ∆(θ, x)

= σ2
u · [SR − vRvT

R/ωR]2,2

∆(θ, x)

[CRBθ]2,2|large a = σ2 · [SR − vRvT
R/ωR]1,1

(σ2/σ2
u) · ∆(θ, x)

= σ2
u · [SR − vRvT

R/ωR]1,1

∆(θ, x)

(3.68)

where

∆(θ, x) =[SR − vRvT
R/ωR]1,1 ·

[
P +

r · vRvT
R

ω2
R

− qvT
R

ωR
− vRqT

ωR

]

2,2

+ [SR − vRvT
R/ωR]2,2 ·

[
P +

r · vRvT
R

ω2
R

− qvT
R

ωR
− vRqT

ωR

]

1,1

− 2 · [SR − vRvT
R/ωR]1,2 ·

[
P +

r · vRvT
R

ω2
R

− qvT
R

ωR
− vRqT

ωR

]

1,2

(3.69)

Note that the expressions in ( 3.68) do not depend on a and σ2.
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3.9 Appendix C: Asymptotic covariance for LS algorithm

The LS estimator of φ has expression:

φ̂LS = argminφ∈Φ

{
K∑

k=1

[yk − f(φ, wk)]
2 +

L∑

l=1

[yR,l − f(φ, xR,l)]
2

}
(3.70)

where

f(φ, xk) = as(θ, xk) (3.71)

see also in ( 3.35). By taking the first derivative on ( 3.70) with respect to φ, we have

0 =
K∑

k=1

[yk − f(φ̂LS, wk)] ·
∂f(φ̂LS, wk)

∂φT
+

L∑

l=1

[yR,l − f(φ̂LS, xR,l)] ·
∂f(φ̂LS, xR,l)

∂φT
(3.72)

We now approximate f(φ̂LS, wk), f(φ̂LS, xR,l), ∂f(φ̂LS, wk)/∂φ and ∂f(φ̂LS, xR,l)/∂φ using

their first order Taylor series expansion around φ and xk, yielding

f(φ̂LS, wk) ≈ f(φ, xk) +
∂f(φ, xk)

∂φT
· (φ̂LS − φ) +

∂f(φ, xk)

∂xT
k

· (wk − xk)

f(φ̂LS, xR,l) ≈ f(φ, xR,l) +
∂f(φ, xR,l)

∂φT
· (φ̂LS − φ)

∂f(φ̂LS, wk)

∂φ
≈ ∂f(φ, xk)

∂φ
+

∂2f(φ, xk)

∂φ∂φT
· (φ̂LS − φ) +

∂2f(φ, xk)

∂φ∂xT
k

· (wk − xk)

∂f(φ̂LS, xR,l)

∂φ
≈ ∂f(φ, xR,l)

∂φ
+

∂2f(φ, xR,l)

∂φ∂φT
· (φ̂LS − φ)

(3.73)

Therefore

0 ≈
K∑

k=1

[
yk − f(φ, xk) −

∂f(φ, xk)

∂φT
· (φ̂LS − φ) − ∂f(φ, xk)

∂xT
k

· (wk − xk)

]

·
[
∂f(φ, xk)

∂φ
+

∂2f(φ, xk)

∂φ∂φT
· (φ̂LS − φ) +

∂2f(φ, xk)

∂φ∂xT
k

· (wk − xk)

]

+
L∑

l=1

[
yR,l − f(φ, xR,l) −

∂f(φ, xR,l)

∂φT
· (φ̂LS − φ)

]

·
[
∂f(φ, xR,l)

∂φ
+

∂2f(φ, xR,l)

∂φ∂φT
· (φ̂LS − φ)

]

(3.74)
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We further simplify the above expression by ignoring the second-order terms:

0 ≈
(

K∑

k=1

{
[yk − f(φ, xk)] ·

∂2f(φ, xk)

∂φ∂φT
− ∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂φT

}

−
L∑

l=1

∂f(φ, xR,l)

∂φ
· ∂f(φ, xR,l)

∂φT

)
· (φ̂LS − φ)

+
K∑

k=1

{
[yk − f(φ, xk)] ·

∂f(φ, xk)

∂φ
+ [yk − f(φ, xk)] ·

∂2f(φ, xk)

∂φ∂xT
k

(wk − xk)

−∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂xT
k

· (wk − xk)

}
+

L∑

l=1

[yR,l − f(φ, xR,l)] ·
∂f(φ, xk)

∂φ

(3.75)

yielding the following approximate formula for the covariance matrix of the LS estimator

cov(φ̂LS) ≈P(φ, x)−1 ·
{

σ2 · P(φ, x) + σ2
u ·

K∑

k=1

[
σ2 · ∂2f(φ, xk)

∂φ∂xT
k

Uk
∂2f(φ, xk)

∂xk∂φT

+
∂f(φ, xk)

∂φ

∂f(φ, xk)

∂xT
k

Uk
∂f(φ, xk)

∂xk

∂f(φ, xk)

∂φT

]}
· P(φ, x)−1

(3.76)

where

P(φ, x) =

K∑

k=1

∂f(φ, xk)

∂φ
· ∂f(φ, xk)

∂φT
+

L∑

l=1

∂f(φ, xR,l)

∂φ
· ∂f(φ, xR,l)

∂φT
(3.77)

Recall

φ = [θT , a]T (3.78)

implying

∂f(φ, xk)

∂φ
= [a · ∂s(θ, xk)/∂θT , s(θ, xk)]

T (3.79)

Therefore, for the energy-based acoustic source localization problem with isotropic acoustic-

energy attenuation model (see also in ( 3.28), we have

∂s(θ, xk)

∂θ
= −2αβ · ‖θ − xk‖2(α−1)

1 + β · ‖θ − xk‖2α
· (θ − xk) (3.80)

and an analogous expression for the reference nodes is obtained by replacing xk by xR,l. Also

∂2s(θ, xk)

∂θ, ∂θT
= ∂

[
− 2αβ · ‖θ − xk‖2(α−1)

(1 + β · ‖θ − xk‖2α)2
· (θ − xk)

]
/∂θT

= − 2αβ · ‖θ − xk‖2(α−1)

(1 + β · ‖θ − xk‖2α)2
· I2 −

4α(α − 1)β · ‖θ − xk‖2(α−2)

(1 + β · ‖θ − xk‖2α)2 · (θ − xk)(θ, xk)T

+
8α2β2 · ‖θ − xk‖2(α−1)

(1 + β · ‖θ − xk‖2α)3
· (θ − xk)(θ − xk)

T

(3.81)
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Therefore, for energy-based acoustic source localization problem

∂2f(φ, xk)

∂φ∂xT
k

=




a · ∂2s(θ, xk)/∂θ, ∂xT

k

∂s(θ, xk)/∂xT
k



 = −




a · ∂2s(θ, xk)/∂θ, ∂θT

∂s(θ, xk)/∂θT



 (3.82)



www.manaraa.com

66

CHAPTER 4. EVENT-REGION ESTIMATION FOR SENSOR

NETWORKS UNDER THE POISSON REGIME

We develop a Bayesian method for event-region estimation in large-scale sensor networks

under the Poisson regime. We propose a parametric model for the location and shape of the

event region and assume that the unknown signal strength within this region is constant. We

adopt a fusion architecture where each node in the network makes a decision locally and then

conveys it to a fusion center. Both binary and quantized decisions are considered, corresponding

to utilizing one or multiple thresholds (respectively) to make the local decisions. MCMC

algorithms are derived for simulating from the posterior distributions of the unknown signal,

location and shape parameters and for estimating these parameters. Numerical simulations

demonstrate the performance of the proposed methods.

4.1 Introduction

We consider estimation of localized phenomena1 using a large number of densely deployed

sensor-processor elements (nodes). We adopt a fusion architecture where each node in the

network makes a local decision and then conveys it to a fusion center (which can be performed

efficiently using a mobile access point, as described in [86]). A MAC protocol is used to collect

the local decisions, where each node has a probability pMAC to transmit its decision successfully.

Furthermore, we assume that the fusion center knows the locations of the nodes. The fusion

center processes the collected decisions, identifies regions of interest (e.g. areas with elevated

signal levels), and estimates their properties. This architecture has been studied recently in

[10] where it was assumed that

1Here, ”localized phenomena” correspond to the spatial phenomena that affect only parts of the
network.
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1. the nodes are randomly deployed following a homogeneous Poisson point process;

2. each node’s measurement is corrupted by i.i.d. additive noise.

It was further assumed in [10] that the nodes make binary local decisions. Under the above

assumptions, ”alarming” the sensors (i.e. deciding that the signal is present) is equivalent to

a location-dependent thinning of the original sensor distribution. Consequently, the alarmed

nodes form a heterogeneous Poisson point process, hence the name Poisson regime [10]. In [10],

an asymptotic event-region detector has been developed for the Poisson regime assuming that

the location of the event region is known and that the shape of the spatial signal within the

event region is known up to a scaling (signal-strength) constant.

In this Chapter, we adopt the exact heterogeneous Poisson process model for the alarmed

nodes and develop a Bayesian method for estimating the location of the event region and the

strength and shape of the underlying spatial signal. We also generalize the Poisson regime to

account for the scenario where the nodes utilize multiple local thresholds to quantize the sensor

measurements and then send the resulting quantized (multi-bit) data to the fusion center.

In Section 4.2, we introduce the measurement and event region models and prior spec-

ifications. In Section 4.3, we develop Bayesian methods for simulating and estimating the

event-region parameters. In Section 4.4, we evaluate the performance of the proposed methods

via numerical simulations. Concluding remarks are given in Section 4.5.

4.2 Measurement and event-region models

We introduce the measurement-error models for singla and multiple thresholds in Sec-

tion 4.2.1 and describe the prior specifications and specific event-region and noise models in

Section 4.2.2.

4.2.1 Measurement-error model

We assume the measurement yn obtained at node n follows the signal-plus-noise model2:

yn = θs(ϕ, xn) + en (4.1)

2Note that yn may also be a sufficient statistics computed from the data collected at node n.
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where the first term represents the parameterized signal of interest and en denotes the zero-

mean additive noise. Here, θs(ϕ, x) models the signal of interest as a function of the node

location (we assume each node knows its own location) x; θ and ϕ are the unknown signal

strength parameter and vector of signal location and shape parameters. Then, we denote the

full set of parameters as:

φ = [θ, ϕT ]T (4.2)

We first review the classical Poisson regime where the nodes make binary decisions and

then extend it to the multiple threshold scenario.

Single threshold: If node n makes its decision by comparing yn with a threshold τ , with

the assumption 1-2 hold, then the alarmed node locations3 follow a heterogeneous Poisson

process with intensity at location x:

λφ(x) = λ0 · pMAC · Pτ [θs(ϕ, x)] = λ · Pτ [θs(ϕ, x)] (4.3)

where λ0 is the (known) intensity of the initial Poisson process (describing the node deploy-

ment), pMAC is the (known) constant probability of successful transmission (as in [10])), and

Pτ [θs(ϕ, x)] is the probability of detecting the signal at location x. Consequently, Pτ [0] is the

false-alarm probability of the local node decisions. The likelihood that there are N alarmed

nodes within region A at locations x1, x2, . . . ,xN is

lS(x1, x2, . . . ,xN |φ) =

{
N∏

n=1

Pτ [θs(ϕ, x)]

}
· exp

{
−λ ·

∫

A
Pτ [θs(ϕ, u)]du

}
(4.4)

Multiple threshold: Suppose now that each node n compares its measurement yn with

K thresholds:

τ1 < τ2 < · · · < τK (4.5)

and is alarmed if yn is larger than the smallest threshold τ1. For notational convenience, we

also define τK+1 = +∞, implying that PτK+1(x) ≡ 0 for all real arguments x. Each alarmed

node n reports a number k(n) ∈ {1, 2, . . . , K} corresponding to the interval [τk(n), τk(n)+1)

which contains the measurement yn, i.e.

yn ∈ [τk(n), τk(n)+1) (4.6)

3A node n is alarmed if its measurement yn is higher than the threshold τ .
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If the Poisson-regime assumptions 1-2 and measurement-error model ( 4.1) hold, then the N

alarmed nodes at locations x1, x2, . . . ,xN with decisions k(1), k(2), . . . , k(N) form a multivari-

ate heterogeneous Poisson process with the following likelihood function:

lM(k(1), k(2), . . . , k(N), x1, x2, . . . ,xN |φ)

∝ (

N∏

n=1

{Pτk(n)
[θs(ϕ, xn)] − Pτk(n)+1

[θs(ϕ, xn)]}) · exp

{
−λ ·

∫

A
Pτ1 [θs(ϕ, u)]du

} (4.7)

In the following section, we describe a simple circular event-region model and Gaussian noise

model that will be used in the following discussion. The proposed framework is applicable to

other event-region and noise models as well.

4.2.2 Event-region and noise models and prior specifications

Consider a two-dimensional (2-D) sensor network deployed to estimate an event region

R(ϕ) having a circular shape with radius r and center described by Cartesian coordinates:

z = [z1, z2]
T . Hence, the vector of event-region shape and location parameters is

ϕ = [r, zT ]T (4.8)

We assume that the signal is constant (equal to θ) within the event region and zero outside.

Equivalently,

s(ϕ, x) =






1, x ∈ R(ϕ)

0, x /∈ R(ϕ)
=






1, ‖x − z‖ ≤ r

0, ‖x − z‖ > r
(4.9)

where ‖x − z‖ =
√

(x − z)T (x − z) denotes the Euclidean distance between x and z (in

Cartesian coordinates).

We adopt the Gaussian noise model with known variance σ2, implying

Pτ (θ) = Φ(
θ − τ

σ
) (4.10)

where Φ(·) denotes the cumulative distribution function of the standard normal random vari-

able.

Prior specifications: We assume that θ and ϕ are independent a priori:

πφ(φ) = πθ(θ) · πϕ(ϕ) (4.11)
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and adopt the following simple uniform-distribution prior probability density functions for θ

and ϕ:

πθ(θ) = uniform(θMIN, θMAX)

πϕ(ϕ) = πr(r) · πz1(z1) · πz2(z2)

πr(r) = uniform(rMIN, rMAX)

πz1(z1) = uniform(z1,MIN, z1,MAX)

πz2(z2) = uniform(z2,MIN, z2,MAX)

(4.12)

4.3 Bayesian analysis

The goals of our analysis are to estimate the unknown parameters φ under the measurement

model and prior specifications in Section 4.2. In Section 4.3.1 (below), we construct a method

for drawing samples from the posterior distributions of the parameters φ. Then, we utilize

these samples to compute approximate MMSE estimates of φ (Section 4.3.2).

4.3.1 Simulating the parameters from poseterior pdfs

Single threshold: Our inference about φ is based on its posterior pdf:

pS(φ|x1, x2, . . . ,xN ) ∝ lS(x1, x2, . . . ,xN |φ) · πφ(φ) (4.13)

Under the circular even-region model in Section 4.2.2, the above pdf simplifies to:

pS(φ|x1, x2, . . . ,xN ) ∝ qS(φ) · πφ(φ) (4.14)

where

qS(φ) = (
Pτ [θ]

Pτ [0]
)n(ϕ) · exp{−λ · r2π · (Pτ [θ] − Pτ [0])} (4.15)

is the normalized likelihood (i.e. likelihood ratio) and n(ϕ) denotes the number of alarmed

nodes in the event region R(ϕ). We now outline our proposed scheme for simulating from

p(φ|x1, x2, . . . ,xN ). We utilize shrinkage slice sampler [87]. First, define the initial (largest)

hyperrectangle:

θL = θMIN, θU = θMAX, rL = rMIN, rU = rMAX,

zi,L = zi,MIN, zi,U = zi,MIN i ∈ {1, 2}
(4.16)
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which coincide with the parameter space of φ. We generate φ(t) from pS(φ|x1, x2, . . . ,xN ) as

follows:

1. Draw an auxiliary random variable u(t) from uniform(0, qS(φ
(t−1))) pdf;

2. Draw

• θ from uniform(θL, θU ) pdf,

• r from uniform(rL, rU ) pdf, and

• zi from uniform(zi,L, zi,U ) pdfs for i ∈ {1, 2}

yielding φ = [θ, r, z1, z2]
T .

3. Check if φ is within the slice, i.e.

qS(φ) ≥ u(t) (4.17)

If ( 4.17) holds, return

φ(t) = [θ(t), r(t), z
(t)
1 , z

(t)
2 ]T = φ (4.18)

and exit the loop. If ( 4.17) does not hold, then shrink the hyperrectangle4:

• If θ < θ(t−1), set θL = θ; else if θ > θ(t−1), set θU = θ.

• If r < r(t−1), set rL = r; else if r > r(t−1), set rU = r.

• If z1 < z
(t−1)
1 , set z1,L = z1; else if z1 > z

(t−1)
1 , set z1,U = z1.

• If z2 < z
(t−1)
2 , set z2,L = z2; else if z2 > z

(t−1)
2 , set z2,U = z2.

• Go back to 2.

Cycle between Steps 1-3 until the desirable number of samples has been collected (after

discarding the samples from the burn-in period). This scheme produces a Markov chain

φ(0), φ(1), φ(2), . . . with stationary distribution equal to the posterior pdf pS(φ|x1, x2, . . . ,xN ).

4Here, the hyperrectangels shrink toward φ(t−1) = [θ(t−1), r(t−1), z
(t−1)
1 , z

(t−1)
2 ], which is clearly in

the slice, see Step 1.
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Since the evaluation of qS(φ) may cause a floating-point underflow, it is often safer to utilize

its logarithm. In the tth step of the slice sampler, we then compute ln qS(φ
(t−1))− ǫ(t), where

ǫ(t) is exponentially distributed with mean one, and say that φ is in the slice if

ln qS(φ) ≥ ln qS(φ
(t−1)) − ǫ(t) (4.19)

which is equivalent to ( 4.17).

Multiple thresholds: Our inference about φ is based on its posterior pdf:

pM(φ|k(1), k(2), . . . , k(N), x1, x2, . . . ,xN ) ∝ lM(k(1), k(2), . . . , k(N), x1, x2, . . . ,xN |φ) ·πφ(φ)

(4.20)

Under the circular event-region model in Section 4.2.2, the above pdf simplifies to:

pM(φ|k(1), k(2), . . . , k(N), x1, x2, . . . ,xN ) ∝ qM(φ) · πφ(φ) (4.21)

where

qM =

[
K∏

k=1

(
Pτk

[θ] − Pτk+1
[θ]

Pτk
[0] − Pτk+1

[0]

)nk(ϕ)
]

(4.22)

and nk(ϕ), k = 1, 2, . . . , K denotes the number of alarmed nodes in the event region R(φ)

reporting measurements in the interval [τk, τk+1).

To simulate from the posterior pdf in ( 4.20), we apply the above shrinkage slice sampler,

with qM(φ) computed using ( 4.22) [which generalizes ( 4.15) used in the single-threshold

scenario]. the modification in ( 4.19) applies to the multiple threshold scenario as well.

4.3.2 Estimating the event-region parameters

Once we have collected enough samples, we can estimate the posterior mean of φ simply

by averaging the last T draws:

E[φ|y] ≈ φ̂ =
1

T

t0+T∑

t=t0+1

φ(t) (4.23)

where t0 defines the burn-in period. Note that φ̂ is an approximate MMSE estimate of φ.



www.manaraa.com

73

4.4 Numerical examples

We consider a 2-D network with nodes randomly (uniformly) placed in a square region

measuring 50× 50 m2. In Figure 4.1(a), we show the noiseless field θ · s(ϕ, x) as a function of

location x; in Figure 4.1(b), we show the corresponding heterogeneous Poisson field, simulated

using K = 1 threshold at τ = 1.64 (corresponding to the false alarm probability Pτ [0] = 5%),

noise variance σ2 = 1, and the following event-region parameters: θ = 1, r = 5, z1 = 15, z2 =

15, and initial node density and successful transmission probability that yield λ = λ0 ·pMAC = 2

nodes per m2. We also selected the following prior parameters: θMIN = −3, θMAX = 5,

z1,MIN = 0, z1,MAX = 30, z2,MIN = 0, z2,MAX = 30, rMIN = 3, rMAX = 10.
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Figure 4.1 Noiseless field (left) and a realization of the heterogeneous Pois-

son field formed by the alarmed nodes, for θ = 1 and λ = 2

(right).

We first analyze the field in Figure 4.1 using the shrinkage slice sampler in Section 4.3.1,

where we discarded t0 = 5000 burn-in samples and used T = 5000 samples for estimating the

event-region parameters, see ( 4.23). In Figure 4.2, we show the contours of

• an estimated event region obtained using the approximate MMSE estimates in ( 4.23)

(dashed line) and

• exact event region (full line)
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which demonstrate the remarkably good performance of the proposed estimator.
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Figure 4.2 Estimated event region obtained using the approximate MMSE

estimates of the location and shape paraemters (dashed line)

and exact event region (full line).

In the second simulation example, we study the average MSE performance of the approx-

imate MMSE method in ( 4.23), calculated using 150 independent trials. In each trial, we

generated independent node locations and measurement noise realizations and estimated the

signal parameters using the approximate MMSE method in ( 4.23) with t0 = 200 and T = 1800

samples. We consider the noiseless field in Figure 4.1(a) with the same event-region and noise

parameters as in the previous example. However, in this example, we have chosen a more chal-

lenging deployment scenario with a smaller density: λ = 1 nodes per m2. We consider both

single- and multiple-threshold scenario. In the single-threshold case (i.e. K = 1), we selected

the threshold τ to guarantee the false-alarm probability of Pτ [0] = 5%. In the multiple-

threshold case, we chose K = 4 thresholds to satisfy Pτ1 [0] = 5%, Pτ2 [0] = 3.75%, Pτ3 [0] =

2.5%, Pτ4 [0] = 1.25%.

Figure 4.3(a) shows the average MSEs for the approximate MMSE estimates of the signal

strength θ as a function of θ. In the single-threshold scenario, the estimation performance

deteriorates for θ > 1.5 since it is not possible to identify large signal strength using on bit

only5. Figure 4.3(b), shows the average MSE for the approximate MMSE estimate of the

event-region radius r. The accuracy of estimating r improves as θ increases and is limited by

5A similar problem occurs for K = 4 threshold for very large values of θ.
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Figure 4.3 Average MSEs for approximate MMSE estimates of the signal

strength θ (left) and event-region radius r (right), as function

of θ, for K ∈ {1, 4} and λ = 1.

the node density λ.
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Figure 4.4 Average MSEs for approximate MMSE estimates of the even-

t-region center coordinates: z1 (left) and z2 (right), as function

of signal strength θ, for K ∈ {1, 4} and λ = 1.

Figure 4.4 shows the average MSEs for the approximate MMSE estimates of the event-

region center coordinates. The accuracies of estimating z1 and z2 improve as θ increases and

are limited by the node density λ.
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4.5 Conclusion remarks

We proposed Bayesian methods for event-region estimation in large-scale sensor networks

under the univariate and multivariate Poisson regimes (corresponding to utilizing one or mul-

tiple thresholds to make local decisions at the nodes).
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CHAPTER 5. MEAN-FIELD ESTIMATION AND DETECTION IN

CORRELATED GAUSSIAN RANDOM FIELD

We propose distributed methods for estimating and detecting the mean of a correlated

Gaussian random field observed by a sensor network. The random-field correlations are as-

sumed to follow a CAR model. First, a distributed ML estimator of the mean field is derived.

We then develop batch and sequential detectors for testing the hypothesis that the mean field

is greater than a specified level. We also derive exact and approximate performance measures

for our methods. Numerical examples demonstrate the performance of the proposed approach.

5.1 Introduction

In large-scale wireless sensor networks, sensor-processor elements (nodes) will be densely

deployed to monitor the environment at close range with high spatial and temporal resolutions

[88]. Due to the high node density, the physical phenomena monitored by sensor networks (e.g.

concentration of a chemical, temperature, or water contamination) usually yield observations

that are highly correlated in space [34, 36, 37]. This spatial correlation has been utilized for (i)

data aggregation, compression, routing, and querying, (ii) localization, and (iii) MAC protocol

design, see [34, 36, 37] and references therein.

In this chapter, we first derive a distributed ML method for estimating the mean of a

spatially correlated Gaussian random field in sensor-network environments where the field

correlations follow a conditional autoregressive model [26, 89–91]. We then develop batch and

sequential detectors for testing the hypothesis that the mean field is greater than a specified

level. Gaussian conditional autoregressions have been used in image processing for texture

analysis and many other applications, e.g. agricultural field experiments, human geography,
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geographical epidemiology, and astronomy, see [90] and references therein. The CAR model can

also approximate common spatial correlation models, such as exponential, squared exponential,

spherical, and Matern, see [91]. We derive estimators and detectors for the general CAR model

and then discuss a simple special case. Our simulation results demonstrate the importance of

incorporating spatial field correlations into the design of detection algorithms in sensor-network

environments.

In Section 5.2, we introduce the measurement model and in Section 5.3 we propose a

distributed ML estimator of the mean field (Section 5.3.1). Mean-field detection is discussed

in Section 5.4 where batch and sequential detectors are developed (Sections 5.4.1 and 5.4.2).

In Section 5.5, we briefly discuss calibration of the random-field parameters under a simple

connectivity-based spatial-dependence model and apply it to a rainfall precipitation data set.

We evaluate the performance of the proposed methods using simulated and real-data examples

(see Sections 5.3.2, 5.4.3, and 5.5.1).

5.2 Measurement model

Assume that the region of interest contains N nodes at locations si, i = 1, 2, . . . , N and

denote the measurements collected at these nodes by z(si, i = 1, 2, . . . , N). we model the

random-field values z(si), i = 1, 2, . . . , N by specifying their full conditional pdfs [26]:

p(z(si)|{z(sj) : j 6= i}) =
1

(2πτ2
i )1/2

· exp{− 1

2τ2
i

· [z(si) − µi]
2} (5.1)

where µi = E[z(si|{z(sj) : j 6= i})] and τ2
i = var[z(si|{z(sj) : j 6= i})] are the corresponding

conditional mean and variances. Assuming pairwise-only dependence between the spatial lo-

cations and constant marginal mean of the field, we obtain the following linear model for the

conditional means:

µi = α +
N∑

j=1

ci,j [z(sj) − α] (5.2)

where α is the (unknown) marginal mean of the random field and ci,j are (known) spatial

dependence parameters satisfying

ci,jτ
2
j = cj,iτ

2
i , ci,i = 0 (5.3)
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see [26]. If a Markovian assumption is further imposed, then ci,j = 0 if the location si and sj

are not neighbors. We assume that the neighborhood of a node i [denote by N (i)] consists of

all nodes j ∈ {1, 2, . . . , N} that are different from i and within a cutoff distance d from that

node, i.e.

N (i) = {j : ‖si − sj‖ ≤ d and j 6= i} (5.4)

where ‖si − sj‖ denotes the (Euclidean) distance between the locations si and sj .

The results in [26] imply that the random-field vector z = [z(s1), z(s1), . . . , z(s1)]
T is

multivariate Gaussian with mean and covariance E[z] = α1N and cov[z] = (IN − C)−1D,

where C is an N × N matrix whose (i, j) element is ci,j and D = diag{τ2
1 , τ2

2 , . . . , τ2
N}. The

condition ( 5.3) ensures that cov[z] is a symmetric matrix. The spatial dependence coefficients

ci,j need to be carefully chosen to ensure that cov[z] is a positive definite matrix. To achieve

appreciable correlations among the measurements at neighboring nodes, we typically need to

select the ci,j coefficients close to a boundary of the set of allowed values, see also [90] and

Section 5.3.2.

Define the following recursive expressions:

q1(n) =
n∑

i=1

z(si) ·
1 − ∑

j∈N (i) ci,j

τ2
i

= q1(n − 1) + z(sn) ·
1 − ∑

j∈N (n) cn,j

τ2
n

q0(n) =
n∑

i=1

1 − ∑
j∈N (i) ci,j

τ2
i

= q0(n − 1) +
1 − ∑

j∈N (n) cn,j

τ2
n

(5.5)

for n = 1, 2, . . . , N , where q1(0) = q0(0) = 0. The above recursive formulas will be used in

Section 5.3 and 5.4 to implement the estimation and detection of the mean field α. If the

random field z is not Markov, then the above recursions still hold, with the neighborhood N (i)

generally covering all the nodes in the network except the ith.

Spatially white random field: If the random field z is spatially white, then C = 0 and

τ2
i = σ2, where σ2 is the marginal variance of the observations. Then ( 5.5) simplifies to

q1(n) =

∑n
i=1 z(si)

σ2
= q1(n − 1) +

z(sn)

σ2
, q0(n) =

n

σ2
(5.6)
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5.3 Mean-field estimation

Our goal is to estimate the marginal mean α of the measured field assuming that D and

C are known. Under the above model, the log likelihood of α is

L(α) = −N

2
ln(2π) − 1

2
ln|cov[z]| − 1

2
(z − 1Nα)T (cov[z])−1(z − 1Nα) (5.7)

Then, the ML estimate of α easily follows by maximizing L(α):

α̂ =
zT (cov[z])−11N

1T
N (cov[z])−11N

=
zT (IN − C)1N

1T
N (IN − C)1N

=
q1(N)

q0(N)
(5.8)

where q1(n) and q2(n) have been defined in 5.5. Note that α̂ is an unbiased estimator of α.

Consequently, its mean-square error (MSE) is equal to its variance and is easily computed as

MSE(α̂) = var[α̂] =
1

1T
N (cov[z])−11N

=
1

q0(N)
(5.9)

Sample-mean estimator: We now derive the performance of the commonly used sample-

mean estimator of α:

z =
1

N
· 1T

Nz =
1

N
·

N∑

i=1

z(si) (5.10)

which ignores the spatial dependence in the data. Here, z is Gaussian and unbiased with

mean-square error MSEz(z) = var[z] = 1T
Ncov[z]1N/N2; recall that cov[z] = (IN − C)−1D.

Straightforward application of the Cauchy-Schwartz inequality yields

MSE(z) ≥ MSE(α̂) (5.11)

implying that the MSE of the sample-mean estimator of α is always larger than or equal to

the MSE of the corresponding ML estimator.

5.3.1 Distributed implementation

We now present a scheme for sequential updating quantities necessary for estimating the

marginal mean of the field α. Denote by n the node ”visited” in the nth step of our scheme.

This node recursively computes q0(n) and q1(n) using ( 5.5) and passes them to the next node

(indexed by n + 1). After visiting all N nodes, the ML estimate of α is computed using ( 5.8).
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If the Markovian dependence assumption holds, then we can easily adapt the changes in

the network topology. To update q1(n) and q0(n) using ( 5.5), the nth node utilizes only

cn,j , j ∈ N (n) (i.e. those coefficients that correspond to its neighbors) and its conditional

variance τ2
n. If the fusion center (i.e. node N) knows all spatial-dependence coefficients ci,j

and conditional variances τ2
i , then it can compute q0(N) locally, implying that the nodes

need to pass q1(n) only. Note that q1(N) is the sufficient statistic for estimating α. If the

Markovian dependence assumption does not hold, then adapting to changes in the network

topology requires that all nodes know all spatial-dependence coefficients [to be able to update

q1(n), see ( 5.5)].

5.3.2 Numerical example 1: mean field estimation

To assess the performance of the proposed methods, we consider a sensor network containing

N = 1000 nodes randomly (uniformly) distributed on a 50m × 50m grid with 1m spacing

between the potential node locations. In all simulation examples, we have selected the cutoff

distance d = 2.3m. Also, the nodes are visited row by row starting from the upper left corner

of the network. Here, we assume that the conditional variances τ2
i are constant:

τ2
i = τ2, i = 1, 2, . . . , N (5.12)

implying that ci,j = cj,i (i.e. C is a symmetric matrix) and D = τ2IN . The above assumptions

are commonly made in the literature, see e.g. [26, 89]. Let us further choose

C = cW (5.13)

where c is a constant describing the level of spatial dependence among the observations and

W is the connectivity matrix whose (i, j) element is wi,j =






1, j ∈ N (i)

0, j /∈ N (i)
. Since we wish to

model positive spatial dependence among the observations, we focus on the case where c > 0.

Denote by λMAX = λ1 ≥ λ2 ≥ · · · ≥ λN the ordered eigenvalues of W . Then, to ensure that

cov[z] = τ2 · (I − cW )−1 is positive definite, c should be such that

0 ≤ c <
1

λMAX
(5.14)
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Figure 5.1 MSEs for the ML and sample-mean estimates of the mean field

α as functions of the spatial-dependence level c.

In this example, we have chosen the conditional variance parameter τ2 = 1. For c = 0.070, 0.083

and 0.086, the corresponding maximum correlation coefficients [over all pairs of observations]

are 0.25, 0.61 and 0.85 (respectively) and 1/λMAX = 0.0872. Observe that c needs to be very

close to 1/λMAX to achieve appreciable correlations in the data. In Figure 5.1, we compare

the MSEs of the ML and sample-mean estimates of α as functions of the spatial-dependence

level c. The ML mean-field estimate significantly outperforms the corresponding sample-mean

estimate if the maximum field correlation between neighbors is larger than 0.61 (corresponding

to c larger than 0.083).

5.4 Mean-field detection

Consider the detection problem where we wish to decide if the marginal mean α is higher

than a specified lever. Without loss of generality, we set this level to zero. Therefore, our

goal is to test the hypothesis H0 : α = 0 (mean-field signal absent) versus the alternative

H1 : α > 0 (mean-field signal present). In the following, we develop batch and sequential

detectors for the above problems (Section 5.4.1 and 5.4.2, respectively) assuming that the field

covariance parameters τ2 and ci,j , i, j = 1, 2, . . . , N are known.
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5.4.1 Batch detector

Assuming that all N observations are available, the likelihood-ratio test for the above

problem simplifies to declaring the signal presence if

q1(N) > ξ (5.15)

and signal absence otherwise. Here, q1(N) is computed using the recursion in ( 5.5) and ξ is a

threshold chosen to guarantee a specified probability of false alarm PFA,d. The threshold ξ is

computed by solving

Φ(
ξ√

q0(N)
) = 1 − PFA,d (5.16)

where Φ(·) denotes the cumulative distribution function of the standard normal random vari-

able. For the mean-signal level α > 0 the probability of detection achieved by the above test

is given by

PD(α) = Φ(
αq0(N) − ξ√

q0(N)
) = Φ(α

√
q0(N) − Φ−1(1 − PFA,d)) (5.17)

where the second equality in ( 5.17) is obtained by using ( 5.16). The results ( 5.16) and ( 5.17)

follow from the fact that q1(N) is Gaussian with mean αq0(N) and variance q0(N).

5.4.2 Sequential detector

We describe a sequential-testing approach to detecting the mean-field signal where the

nodes are visited sequentially

• until, for some n ∈ {1, 2, . . . , N}

q1(n) > A + B · q0(n) (5.18)

in which case we stop testing and declare the presence of the mean-field signal;

• otherwise, if

q1(n) < A + B · q0(n) (5.19)

for all n = 1, 2, . . . , N , we declare the absence of the mean-field signal.
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For spatial white field, the above approach becomes similar to the Armitage’s restricted se-

quential procedure in [92]. We determine the constants A and B so that the resulting tests

approximately achieve false-alarm and detection performance specifications. We approximate

x(n) = [z(sn) − B] · (1 − ∑
j∈N (n) cn,j)/τ2

n as a one-dimensional diffusion process with drift

(α−B) · (1−∑
j∈N (n) cn,j) per unit time and growth in variance at a rate (1−∑

j∈N (n) cn,j),

and having an absorbing barrier at A. We can then approximate the probability that q1(n)

crosses A+B ·q0(n) in not more than N steps by the probability of absorption [for the diffusion

process x(n)] before time N . Unfortunately, it is not possible to find a closed-form expression

for this probability. However, we can find an approximate absorption probability expression

for the diffusion process with an ”average” drift (α − B) · q0(N)/N per unit time and ”av-

erage” variance growth rate q0(N)/N . Using the result in [93], this absorption probability is

approximated by the following expression (see also in [92]):

P [α; A, B, N ] = Φ(
(α − B)q0(N) − A√

q0(N)
) + exp[2A(α − B)] · Φ(

−(α − B)q0(N) − A√
q0(N)

) (5.20)

Denote the desired probabilities of false alarm and detection by PFA,d and PD,d and assume that

the region under test is fixed (containing a fixed number of nodes N). Setting the likelihood

ratio for testing H1 : α = αd versus H1 : α = 0 to PD,d/PFA,d along the boundary q1(n) =

A + B · q0(n) leads to the following choices of A and B:

A(αd) =
1

αd
· ln

(
PD,d

PFA,d

)
, B(αd) =

αd

2
(5.21)

We compute αd by solving the following equation:

PD,d = P [αd; A(αd), B(αd), N ] (5.22)

It can be shown that P [αd; A(αd), B(αd), N ] is an increasing function of αd (see [92]); hence,

we can use bisection to find αd that solves ( 5.22).

The proposed sequential testing procedure can be summarized as:

1. First, specify the desired probabilities of false alarm and detection (PFA,d and PD,d) and

number of nodes in the testing region (N).
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2. Solve ( 5.22) for αd, implying that the desired detection probability PD,d will be approx-

imately achieved if the true mean-field value is αd.

3. Apply the sequential test in ( 5.18) and ( 5.19) using A = A(αd) and B = B(αd).

If the mean signal is greater than αd/2, we approximate the average number of steps needed

to detect the signal by the following expression:

n̂av =
A(αd)

[α − B(αd)] · q0(N)
· ln

(
PFA,d

PD,d

)
(5.23)

provided that n̂av < N .

5.4.3 Numerical example 2: mean-field detection

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 α

 P
D

Batch test for white field
Sequential test for white field
Batch test
Sequential test, approximate
Sequential test, simulated

(a)

0.1 0.15 0.2 0.25 0.3
200

300

400

500

600

700

800

900

1000

 α

 n
av

Approximate
Exact

(b)

Figure 5.2 Exact and approximate detection probabilities of the proposed

and white field batch and sequential tests (left) and aver-

age number of steps in which the proposed sequential test

reached the decision, as functions of the true mean field α, for

PFA,d = 0.05 and PD,d = 0.7.

We examine the performance of the distributed detectors in Section 5.4.1 and 5.4.2. We

adopt the same measurement scenario as in Section 5.3.2 (Example 1). Our performance

metrics are the probabilities of false alarm and detection and average number of steps nav

that the sequential test needs to reach the decision. These quantities are estimated using

Monte Carlo simulations with 1000 independent trials. Throughout this example, we set the

spatial-dependence and conditional-variance parameters to c = 0.083 and τ2 = 1.
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In Figure 5.2, we study the performances of the proposed sequential detector where the

constants A = A(αd) and B = B(αd) have been selected according to the following false-

alarm and detection probability specifications: PFA,d = 0.05 and PD,d = 0.7 [corresponding to

αd = 0.13, computed by solving ( 5.22)]. We have also set the threshold ξ of the batch detector

to guarantee the false-alarm probability PFA,d = 0.05, see ( 5.16). In Figure 5.2(a), we present

• the detection probability of the proposed batch test [computed using ( 5.17)],

• simulated (exact) and approximate (P [α; A(αd), B(αd), N ]) detection probabilities of the

proposed sequential test, and

• exact detection probabilities of the batch and sequential tests that are based on the

assumption that the field is spatially white, as functions of the true mean field α.

Here, the white-field batch and sequential detectors have been designed and implemented byu

substituting ( 5.6) into the expressions in Section 5.4.1 and 5.4.2 (respectively), where the

field variance σ2 has been chosen as the expected sample variance of the observations:

σ2 =
tr[(IN − C)−1D]

N − 1
− 1

N(N − 1)
· 1T

N (IN − C)−1D1N (5.24)

The proposed sequential test achieved the false-alarm probability 0.03 (which is less than the

specified PFA,d) whereas the batch detector achieved exactly the specified false-alarm prob-

ability of 0.05 (as expected). The white-field batch and sequential tests failed to meet the

specifications and achieved false-alarm probability of around 0.2; these tests ignore spatial de-

pendence in the data and underestimate the field variance, which leads to a high false-alarm

rate. Figure 5.2(b) presents the average number of steps nav that the proposed sequential test

needs to reach a decision and approximate n̂av in ( 5.23), as functions of the true mean field

α; it demonstrates that significant savings in speed and energy consumption are possible due

to the reduced average number of nodes needed to make a decision.

We now set the true mean field to α = 0.15 and vary the desired false-alarm probability

PFA,d of the batch and sequential tests, see Figure 5.3. Here, αd, A(αd) and B(αd) for the

sequential test have been chosen so that the detection probability specification PD,d is con-

stant and equal to 0.7. Figure 5.3(a) shows the simulated (exact) false-alarm probabilities of
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Figure 5.3 Achieved false-alarm probabilities of the proposed and white–

field batch and sequential tests (left) and exact and approxi-

mate detection probabilities of the proposed batch and sequen-

tial tests (right) as functions of the desired false-alarm proba-

bility PFA,d, for PD,d = 0.7 and α = 0.15.

the proposed batch and sequential tests and exact false-alarm probabilities of the batch and

sequential tests for spatially white field, as functions of PFA,d. For the proposed batch test,

the exact and desired false-alarm probabilities are identical, as expected. The achieved false-

alarm rates of the proposed sequential test are always within the desired specifications, i.e.

PFA ≤ PFA,d. As before, the white-field batch and sequential tests did not meet the false alarm

specifications. In Figure 5.3(b), we present the detection probability of the proposed batch

test (which is a benchmark) and simulated (exact) and approximate (P [α; A(αd), B(αd), N ])

detection probabilities of the proposed sequential test, as functions of the desired false-alarm

probability PFA,d. Throughout this example, the approximate detection probability curves

have been computed using ( 5.20).

5.5 Calibration

We outline an ML calibration algorithm for estimating α, τ2 and c under the connectivity-

based CAR model in ( 5.12) and ( 5.13). Here, the vector of unknown calibration parameters is

θ = [α, τ2, c]T . For fixed spatial-dependence parameter c, there exist closed-form expressions
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for the ML estimates of α and τ2 (see [26]):

α̂(c) =

∑N
i=1 z(si) · (1 − c · wi+)

N − c · ∑N
i=1 wi+

τ̂2(c) =
1

N
· zT (IN − cW )z − 1

N
· α̂(c) · [

N∑

i=1

z(si) · (1 − c · wi+)]

(5.25)

where wi+ =
∑

j∈N (i) wi,j denotes the number of neighbors of node i. Substituting ( 5.25) into

the log likelihood ( 5.7) and neglecting constant terms yields the concentrated log-likelihood

function

Lc(c) = −N

2
ln[τ̂2(c)] +

1

2
·

N∑

i=1

ln(1 − cλi) (5.26)

to be maximized with respect to c. Recall that λi, i = 1, 2, .., N are the eigenvalues of

the connectivity matrix W and observe that the eigenvalues decomposition of W should be

computed only once, prior to maximizing ( 5.26). The maximization in ( 5.26) [subject to

( 5.14)] can be efficiently performed using the damped Newton-Raphson iteration. Once the

ML estimate ĉ is computed, the ML estimates of α and τ2 are obtained by substituting ĉ into

( 5.25).

5.5.1 Numerical example 3: rainfall precipitation data

We apply the proposed calibration algorithms to the rainfall precipitation data set [94]

which has been used in recent sensor-networks literature, see e.g. [36, 37]. In particular, we

analyze annual precipitation in the Pacific Northwest region of the United States, averaged over

the period 1949-94. The measurements were collected at N = 167 locations forming a grid with

50 km spacing, see Figure 5.4(a). We utilized the CAR model ( 5.12) and ( 5.13) and selected

the cutoff distance d = 55 km. In this case, 1/λMAX = 0.2576 and hence the parameter space for

the spatial-dependence parameter consists of the following interval: 0 ≤ c < 0.2576 = 1/λMAX,

see ( 5.14). We have obtained the following ML estimates of the random field parameters:

α̂ = α̂(ĉ) = 1353 mm, τ̂2 = τ̂2(ĉ) = (406 mm)2, and ĉ = 0.2570. We utilize these estimates to

construct a 95% confidence interval for α:

α ∈
(
α̂ − 1.96[CRBα,α(τ̂2, ĉ)]1/2 + 1.96[CRBα,α(τ̂2, ĉ)]1/2

)
= (1126 mm, 1580 mm) (5.27)
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Figure 5.4 Annual rainfall precipitation as a function of the measurement

location (left) and 95% conficence interval for α as a function

of the spatial-dependence level c.

where CRBα,α(τ2, c) denotes the CRB for α, which is equal to ( 5.8) specified to the CAR

model in ( 5.12) and ( 5.13).

We now show that ignoring positive spatial dependence among the observations leads to

underestimateion of the field variance and, consequently, to poor performance of classical

statistical inference procedures.

Ignoring spatial dependence: Consider now the case where we ignore the spatial de-

pendence in the precipitation data. Then, assuming spatially white field, we estimate α using

its sample-mean estimate in ( 5.9): z = 977 mm. If measurements were indeed spatially white,

we could construct the following 95% confidence interval for α:

α ∈ (z − 1.96 · s/
√

N, z + 1.96 · s/
√

N) = (860 mm, 1094 mm) (5.28)

where s2 = [1/(N −1)] · {∑N
i=1[z(si)]

2}−N ·z2/(N −1) = (769 mm)2 is the sample variance of

the data. The above confidence interval is deceivingly narrow, which is due to the fact that s2 is

a downward biased estimate of var[z(si)]. Observe that the 95% confidence interval in ( 5.27)

and ( 5.28) do not overlap, indicating the importance of incorporating spatial dependence

among the observations into the analysis of sensor-network data.

We now study the dependence of the CAR model based 95% confidence interval for α on
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the spatial-dependence parameter c. In Figure 5.4(b), we show the confidence interval for the

CAR model with the cutoff distance d = 55 km:

α ∈
(
α̂(c) − 1.96[CRBα,α(τ̂2(c), c)]1/2 + 1.96[CRBα,α(τ̂2(c), c)]1/2

)
(5.29)

as a function of c. If there are appreciable correlations among the measurements, the ML

estimate ĉ will be very close to 1/λMAX. Figure 5.4(b) shows that replacing c with 1/λMAX

in ( 5.29) would yield a confidence interval that is very close to that in ( 5.27). Note that

confidence interval for c = 0 in Figure 5.4(b) corresponds to the ”classical” confidence interval

for spatially white field in ( 5.28).
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CHAPTER 6. GENERAL CONCLUSIONS

6.1 Concluding remarks

In this thesis, the following key issues in WSNs have been studied:

• Distributed spatial signal processing. In WSN environment, distributed computation is

preferred due to limited energy and communication ability of each single sensor. In

addition, distributed processing does not require the existence of fusion center, which

eliminates the risk of center failure that may disable a significant portion of the network.

In Chapter 2, we presented an HMRF framework for distributed detection and estimation

of localized phenomena. The algorithm has MRF assumption on the testing field and runs

totally distributedly without the presence of a fusion center. The proposed algorithm

uses binary data from each sensor, requires no more than 10 iterations for final detection

results, and all communications are local (i.e., with neighbors). Calibration method for

MRF parameters estimation and initialization of the algorithm were also discussed in

this chapter.

• Node localization inaccuracy. Most nodes estimate their location in WSN scenario.

Therefore it is important to take into account the node location inaccuracy and in-

corporate them into the signal processing algorithm design. In Chapter 3, a Bayesian

framework was proposed for energy-based source localization, taking into account the

node location uncertainties. Instead of using the estimated node locations as if they

are known, the algorithm assumes both energy source (target) and node locations to

be random variables. An ICM algorithm was then designed to achieve the MAP esti-

mate of both target and node locations. The proposed algorithm provides significant
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improvement compared with methods that ignore the node localization errors.

• Signal processing using heavily quantized data. In WSNs, normally sensor observations

need to be quantized before sending to the processing center to save energy, therefore it

is crucial to design algorithms that are optimal for quantized data other than raw mea-

surements. Under the Poisson regime described in Chapter 4, we proposed a parametric

model for location and shape of the event region and assume event signal strength to be

constant. We then presented a MAP estimator for the parameters as well as the unknown

event signal strength, assuming each node makes binary or quantized local decision. The

algorithm is optimal in processing the quantized data in minimum mean square error

sense, therefore is suitable for field parameter estimation under WSN environment.

• Estimating global phenomena in correlated fields. In large WSNs, sensors are usually

deployed densely to monitor the environment at close range with high spatial resolu-

tion, which yields highly correlated observations in space. The existence of measurement

correlation seriously degrades the detection performance if neglected, thus increases the

difficulty of distributed data processing. In Chapter 5, we first derived a distributed ML

method for estimating the mean of the spatially correlated Gaussian field, where the cor-

relation follows a CAR model; then we proposed a sequential detector for testing whether

the field mean is greater than a certain threshold. It was shown that the sequential detec-

tor requires fewer nodes to be involved with the increase of the actual field mean, which

significantly reduces the energy consumption of the whole sensor network. Moreover, we

proposed a calibration scheme for estimating field correlation parameters and apply the

algorithm to the rainfall precipitation data set and construct the confidence interval for

field mean, which shows the applicability of the proposed algorithm to real problems.

6.2 Future work

We have the following two major directions for future work:

Extension of our algorithms to allow tracking of phenomena over time. Most of the previous
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discussion has been based on static measurements at single time point. However, monitoring

the change of the interesting field over time is of great interest in WSN scenario. Temporal

models (e.g. autoregressive model) could be utilized to track the phenomena of interest (such

as the defect region in Chapter 2 or the movement of the energy source in Chapter 3).

Analysis of the impact of communication errors. In this thesis, we have ignored communi-

cation errors. In practice, however, communication errors are inevitable and may degrade the

performance and increase the actual communication cost of our algorithms. Therefore further

research is needed to study the effects of communication errors on our proposed algorithms and

to develop proper communication protocols to reduce the communication error to a specified

level.

There are several issues that require further work:

Developing more general and realistic model for event-region detection. In Chapter 2, the

autologistic MRF model is too simple to fit real applications. More general models should be

developed to take into account of multiple bits measurements, the change of field over time,

etc. Proper ICM algorithms should also be designed correspondingly.

Distributed implementation of source localization. The MAP algorithm proposed in Chap-

ter 3 requires full communication of raw measurements from each node to processing center,

which is impractical. Therefore, it is of great importance to develop quantization schemes to

reduce the communication load of each node, or to implement the algorithm in distributed way

to eliminate the fusion center at all.

Optimal threshold choice for field parameter estimation under Poisson regime. In Chapter 4,

the thresholds of each sensor are set to satisfy the equally spaced false alarm probability, for

convenience. It is of interest ot find optimal thresholds to minimize the MSE of field parameter

estimation.

Reversible jump MCMC method for multiple signal region estimation. The current version

of algorithm in Chapter 4 is only suitable for single signal region estimation. It is of interest to

develop reversible jump MCMC method [95] to resolve multiple signal source problems, where

the number of the signal source is unknown.
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